当前位置: 首页 > news >正文

国内优秀个人网站欣赏门户网站有

国内优秀个人网站欣赏,门户网站有,网页设计与制作介绍,品牌网站建设 杭州导读 环境:OpenEuler、Windows 11、WSL 2、Python 3.12.3 langchain 0.3 背景:前期忙碌的开发阶段结束,需要沉淀自己的应用知识,过一遍LangChain 时间:20250220 说明:技术梳理,针对FewShotP…

导读

环境:OpenEuler、Windows 11、WSL 2、Python 3.12.3 langchain 0.3

背景:前期忙碌的开发阶段结束,需要沉淀自己的应用知识,过一遍LangChain

时间:20250220

说明:技术梳理,针对FewShotPromptTemplate专门来写一篇博客

概念说明

few-shot最初来源于机器学习的概念,还有one-shot、zero-shot概念,概念如下:

机器学习中的概念

Zero-Shot学习

在训练集中没有某个类别的样本,但在测试集中出现了这个类别。我们需要模型在训练过程中,即使没有接触过这个类别的样本,但仍然可以通过对这个类别的描述,对没见过的类别进行分类。

One-Shot学习

可以理解为用一条数据fine-tune模型。例如,在人脸识别场景里,你只提供一张照片,门禁就能认识各个角度的你。属于Few-Shot学习的特例。

Few-Shot学习

在模型训练过程中,如果每个类别只有少量样本(一个或几个),研究人员希望机器学习模型在学习了一定类别的大量数据后,对于新的类别,只需要少量的样本就能快速学习。

LangChain中的概念

zero-shot

仅通过提示词即可实现模型正确回答

one-shot

通过一个示例和提示词模型正确回答

few-shot

通过少量(大于1)示例和提示词模型正确回答

参数说明

examples

Optional[list[dict]] = None
示例格式化到提示词中,应提供examples 或 example_selector。

example_selector

Optional[BaseExampleSelector] = None

ExampleSelector 选择要格式化到提示符中的示例,应提供examples 或 example_selector。

validate_template

bool = False

是否尝试验证模板。

example_prompt

PromptTemplate

PromptTemplate 用于格式化单个示例。"

suffix

str

要放在示例后面的提示模板字符串。

example_separator

str = "\n\n"

用于连接前缀、示例和后缀的字符串分隔符。

prefix

str = ""

要放在示例前面的提示模板字符串。

template_format

Literal["f-string", "jinja2"] = "f-string"

提示模板的格式。选项包括:'f-string', 'jinja2'。

代码实战

 使用少量示例的prompt和大模型实现分类的功能

from langchain_core.prompts import PromptTemplate, FewShotPromptTemplate# 示例
examples = [{"question": "下面两个动物是同一种类吗?\n1:拉布拉多\n2:哈士奇","answer": "是"},{"question": "下面两个动物是同一种类吗?\n1:草鱼\n2:鲸鱼","answer": "不是"}
]# 示例提示
example_prompt = PromptTemplate(template="Question: {question}\n{answer}")# 整合后的提示词的前缀
prefix = "你是一个生物学家,判断用户提问的动物种类回答,就判断为同一种类, 回答'是',反之回答'不是'。\n下面是一些示例:"# 整合后的提示词的前缀
suffix = "Question: {input}"# 通过FewShotPromptTemplate整合提示词
prompt = FewShotPromptTemplate(prefix=prefix,examples=examples,example_prompt=example_prompt,suffix=suffix,# input_variables=["input"] # 可省略
)print(prompt.invoke("下面两种动物是同一种类吗?\n1:波斯猫\n2:英国短毛").to_string())# 输出
你是一个生物学家,判断用户提问的动物种类回答,就判断为同一种类, 回答'是',反之回答'不是'。
下面是一些示例:Question: 下面两个动物是同一种类吗?
1:拉布拉多
2:哈士奇
是Question: 下面两个动物是同一种类吗?
1:草鱼
2:鲸鱼
不是Question: 下面两种动物是同一种类吗?
1:波斯猫
2:英国短毛

 显然,promptvalue将提示词按照规则整合在一起了,并将用户提问放在最后

下面看下配置大模型后运行结果

from langchain_core.prompts import PromptTemplate, FewShotPromptTemplate
from langchain_openai import ChatOpenAI# 示例
examples = [{"question": "下面两个动物是同一种类吗?\n1:拉布拉多\n2:哈士奇","answer": "是"},{"question": "下面两个动物是同一种类吗?\n1:草鱼\n2:鲸鱼","answer": "不是"}
]# 示例提示
example_prompt = PromptTemplate(template="Question: {question}\n{answer}")# 整合后的提示词的前缀
prefix = "你是一个生物学家,判断用户提问的动物种类回答,就判断为同一种类, 回答'是',反之回答'不是'。\n下面是一些示例:"# 整合后的提示词的前缀
suffix = "Question: {input}"# 通过FewShotPromptTemplate整合提示词
prompt = FewShotPromptTemplate(prefix=prefix,examples=examples,example_prompt=example_prompt,suffix=suffix,# input_variables=["input"] # 可省略
)
# 大模型信息
# translate_llm = ChatOpenAI(base_url="https://llm.xxx.xxxx.com/v1/",openai_api_key="sk-xxxxxxxxxx",model_name="qwen2.5-instruct")translate_llm = ChatOpenAI(**llm_info)
translate_llm =  prompt | translate_llminput5 = "下面两种动物是同一种类吗?\n1:波斯猫\n2:英国短毛"response = translate_llm.invoke(input5)
print(response.content)# 输出
是注:虽然波斯猫和英国短毛猫是两种不同的猫品种,但它们同属于家猫(Felis catus),因此可认为是同一种类。

结束

http://www.yayakq.cn/news/258066/

相关文章:

  • 安徽网新科技怎么建设网站网盘搜索网站如何做的
  • 建站之星模板好吗软件开发流程的具体内容
  • 医院管理系统网站模板wordpress微信接口
  • 三星做号网站常州新北区有做淘宝网站策划的吗
  • 高端开发网站哪家专业wordpress 文章是否有标签
  • 网络平台开展职业培训网站建设网站建设公司广州
  • 专业的南京网站建设修改wordpress主体
  • 企业网站如何设计福州抖音seo
  • 华为公司网站建设方案模板下载网站创建服务公司
  • 分销商城网站建设crm管理系统介绍
  • 扬州市建设局网站佛山个性化网站建设
  • 云南省建设工程招标投标行业协会网站网站开发公司如何拓展业务
  • xxx美食网站建设规划书写wordpress
  • 怎样做网络销售网站网站建设公司宣传册
  • 网站建设流不用实名认证的网页游戏
  • 免费的自学网站大全国外精产品1688
  • 肃宁做网站wordpress插件cloud
  • 有哪些做PPT背景网站网站建设框架程序
  • 新乡网站建设哪家好广州推广排名
  • 简述网站推广方式软件二次开发
  • 在线网站分析工具西安市网站
  • 微信服务号菜单链接网站怎么做的python流星雨特效代码
  • 网站是别人做的域名自己怎么续费厦门做网站公司排名
  • 深圳罗湖区网站建设公司专业购物网站
  • 小型企业网站开发公司百度代理合作平台
  • 钓鱼网站下载安装网站tdk优化文档
  • 商城网站建设需求排版的网站
  • 网站开发总结与收获宣化网站建设
  • 网站为什么要服务器北京工程交易信息网
  • 外贸网站源码多语言莱州网站建设包年