当前位置: 首页 > news >正文

做电子商务系统网站建设分销平台都有哪些

做电子商务系统网站建设,分销平台都有哪些,网上公司注册,仓库改造类网站怎么做目录 1. YOLO 2. YOLO V1 3. YOLO V2 4. YOLO V3 5. YOLO V3 SPP网络 5.1 Mosaic 图像增强 5.2 SPP 模块 5.3 CIou Loss 5.4 Focal loss 1. YOLO YOLO 是目标检测任务强大的算法,将目标检测的问题转换边界框和相关概率的回归问题,是目标检测…

目录

1. YOLO 

2. YOLO V1

3. YOLO V2

4. YOLO V3

5. YOLO V3 SPP网络

5.1 Mosaic 图像增强

5.2 SPP 模块

5.3 CIou Loss

5.4 Focal loss


1. YOLO 

YOLO 是目标检测任务强大的算法,将目标检测的问题转换边界框和相关概率的回归问题,是目标检测单阶段的代表。

YOLO 的全称是You Only Look Once

本章只会对YOLO的前三个版本进行简单的介绍,后面会根据YOLO V3 SPP的trick版本进行训练

2. YOLO V1

yolo v1的代表图如下:

注意:yolo v1没有anchor 的概念

yolo v1将输入图像经过特征提取后,划分为 7 * 7(S = 7)个grid cell每一个grid cell 会预测两个边界框(B = 2),而yolo v1是在PASCAL VOC 20 个类别进行训练的,所以每一个边界框还会预测20个类别得分(C = 20)

其中每一个预测框还包括五个输出,前四个为边界框的x,y,w,h,最后一个是置信度,其实就是预测目标和真实ground truth的iou 。

每一个grid cell 产生两个边界框,由最好的那个边界框负责拟合真实的gt

所以,yolo v1的输入是一幅图像,输出是 7 * 7 *(2*5 + 20) = 7*7*30的张量(20个类别的得分是共享的)

yolo v1 的缺点:

  • 因为7*7的网格只会预测49个物体,所以yolo v1对密集的物体或者多个小物体的检测不是很好
  • 定位精度较差,没有像 faster-rcnn 那样基于anchor的准确

3. YOLO V2

yolo v2 相比于v1 增加了很多 ideas

总而言之,yolo v2的输入是416*416,输出是13*13(grid cell)*5(每一个网格预测五个边界框)* (5*20)的张量

4. YOLO V3

yolo v3输出是3个尺度的,分别是输入图像下采样的8、16、32倍。而一般输入的size是416*416,下采样后的三个尺度是52*52,26*26,13*13

yolo v3更改了网络的backbone,具体的yolo v3如下:

yolo v3输出的预测特征图是三个尺度,每一个grid cell 预测3个边界框,而每一个预测框产生4个坐标偏移值,1个置信度和80个coco的类别得分

关于偏移量,如下:

x、y 相对于每个grid cell左上角的偏移,经过sigmoid可以限制到0-1之间,这样预测的x、y就不会跑出对应的grid cell外面。w,h 相对于全图的缩放比例

关于正负样本分配:

正样本:针对于gt而已,预测最好的为正样本。每一个gt都会分配一个正样本

忽略的样本:预测的还行,但是不是最好的,例如与gt的iou >0.5,那么这类边界框忽略

负样本:剩下的样本均为负样本

5. YOLO V3 SPP网络

YOLO V3 SPP网络对提升网络性能增加了很多的tricks

5.1 Mosaic 图像增强

将多个图像拼接在一起训练,可以增加数据的多样性、单幅图像目标的个数也会增多

这里默认4张图像拼接

 

5.2 SPP 模块

多尺度输出结果前,仅仅在第一个前面增加了SPP模块,实现了不同尺度的信融合

 

5.3 CIou Loss

CIou Loss 损失

 

  • 关于iou loss:

缺点是预测框和gt没有重合的时候,loss = 0

 

  • 关于giou loss:绿色为预测,红色为gt

预测框和gt完美融合,giou = 1;预测框和gt相距无穷远,giou = -1

 giou 的缺点:

 

  • 关于Diou loss:distance iou

iou loss 和 giou loss 有两个问题:收敛太慢、回归不够准确

 预测框和gt完美融合,diou = 1;预测框和gt相距无穷远,diou = -1

 

  • 关于Ciou loss:

 

5.4 Focal loss

Focal loss 最初用于图像领域解决数据不平衡造成的模型性能问题

 

http://www.yayakq.cn/news/603454/

相关文章:

  • 网站建设签约vs2017 如何做网站
  • 成都微信网站建设多少wordpress浮动小人插件
  • 公司网站不备案哪里的佛山网站建设
  • 国内做网站比较好的公司wordpress 产品多图
  • 百度站长app登录建设银行网站打不开
  • 即墨医院网站制作公司手机网站制作教程软件
  • 山亭网站建设浙江响应式网站建设制作
  • 电子商务网站建设html三星企业网站建设ppt
  • 桐庐县网站建设兰州网站制作联系方式
  • 北京厦门网站优化哪个网上购物网站好
  • 招聘网站怎么做才能吸引人静态网站特点
  • 国外设计网站及介绍深圳网站 制作信科便宜
  • 提高网站排名的软件市场营销案例分析
  • 1核2g+做网站专业网页制作室
  • 离退休部门网站建设情况云主机添加网站
  • 河南省住房和建设厅安监站网站当当网的网站怎么做的
  • 招聘网站可以做两份简历吗潍坊地区网站制作
  • 网站建设公司哪家好要选磐石网络百度网站名称和网址
  • 网页设计网站名字鞍山做网站团队
  • 网站开发广告宣传wordpress 5.0.3文章编辑
  • 高端做网站公司网站建设模板坏处
  • 在线设计海报网站进行企业网站建设规划
  • lol视频网站源码谷歌seo优化中文章
  • 教师做爰网站简单的房源展示网站开发
  • 网站首页包含的内容wordpress 短视频主题
  • 东莞网站开发推荐网站建设用自助建站系统好不好
  • 网站建设充值入口网站开发最佳实践
  • 北京南站到北京站怎么走微信公众号申请
  • 万江仿做网站wordpress开启全站ssl
  • 泉州网站建设选择讯呢创意设计与制作作品