当前位置: 首页 > news >正文

西宁的网站建设公司51link友链

西宁的网站建设公司,51link友链,网站建设项目实训报告书,建网站手续一、Datax 1.1 DataX 3.0概述 DataX3.0是一个异构数据源离线同步工具,可以方便的对各种异构数据源进行高效的数据同步。 其github地址为: https://github.com/alibaba/DataX/blob/master/introduction.mdhttps://github.com/alibaba/DataX/blob/mast…

一、Datax

1.1 DataX 3.0概述

 DataX3.0是一个异构数据源离线同步工具,可以方便的对各种异构数据源进行高效的数据同步。   其github地址为:

https://github.com/alibaba/DataX/blob/master/introduction.mdicon-default.png?t=N7T8https://github.com/alibaba/DataX/blob/master/introduction.md

GitCode - 开发者的代码家园icon-default.png?t=N7T8https://gitcode.com/alibaba/datax/overview

1.2 DataX3.0框架设计

DataX将复杂的网状的同步链路变成了星型数据链路,DataX自身作为中间传输载体负责连接各种数据源,解决了异构数据源同步问题。Datax采用的是

   DataX本身作为离线数据同步框架,采用Framework + plugin架构构建。将数据源读取和写入抽象成为Reader/Writer插件,纳入到整个同步框架中:

  • Reader:Reader为数据采集模块,负责采集数据源的数据,将数据发送给Framework。
  • Writer:Writer为数据写入模块,负责不断向Framework取数据,并将数据写入到目的端。
  • Framework:Framework用于连接reader和writer,作为两者的数据传输通道,并处理缓冲,流控,并发,数据转换等核心技术问题。

1.3 DataX3.0核心架构

    DataX 3.0 开源版本支持单机多线程模式完成同步作业运行。基于DataX作业生命周期的时序图,从整体架构设计角度来阐述DataX各个模块相互关系。

1.3.1 核心模块介绍

  • DataX完成单个数据同步的作业,我们称之为Job,DataX接受到一个Job之后,将启动一个进程来完成整个作业同步过程。DataX Job模块是单个作业的中枢管理节点,承担了数据清理、子任务切分(将单一作业计算转化为多个子Task)、TaskGroup管理等功能。
  • DataXJob启动后,会根据不同的源端切分策略,将Job切分成多个小的Task(子任务),以便于并发执行。Task便是DataX作业的最小单元,每一个Task都会负责一部分数据的同步工作。
  • 切分多个Task之后,DataX Job会调用Scheduler模块,根据配置的并发数据量,将拆分成的Task重新组合,组装成TaskGroup(任务组)。每一个TaskGroup负责以一定的并发运行完毕分配好的所有Task,默认单个任务组的并发数量为5。
  • 每一个Task都由TaskGroup负责启动,Task启动后,会固定启动Reader—>Channel—>Writer的线程来完成任务同步工作。
  • DataX作业运行起来之后, Job监控并等待多个TaskGroup模块任务完成,等待所有TaskGroup任务完成后Job成功退出。否则,异常退出,进程退出值非0。

 1.3.2 DataX调度流程

     用户提交了一个DataX作业,并且配置了DataX Channel并发数为20个,需求是将一个100张分表的mysql数据同步到starrocks里面, 则DataX的调度决策思路是:

  • DataXJob根据分库分表切分成了100个Task。
  • 根据20个并发,DataX计算共需要分配4个TaskGroup。
  • 4个TaskGroup平分切分好的100个Task,每一个TaskGroup负责以5个并发共计运行25个Task。

二、StarRocksWriter

   DataX基于StarRocks开发的StarRocksWriter插件支持MySQL、Oracle等数据库中的数据导入至 StarRocks。在底层实现上,StarRocksWriter内部将各种reader读取的数据进行缓存攒批(以csv或 json格式),之后采用Stream Load 方式批量导入至 StarRocks。总体的数据流是Source -->Reader -->DataX channel --> Writer ---> StarRocks

 官网文章地址:

使用 DataX 导入 | StarRocks

三、创建配置文件

 为导入作业创建 JSON 格式配置文件, 这里列举几种Datax同步脚本。

(1)同步oracle数据至starrocks:oracle2starrocks.json

{"job": {"setting": {"speed": {"channel": 1},"errorLimit": {"record": 0,"percentage": 0}},"content": [{"reader": {"name": "oraclereader","parameter": {"username": "root","password": "root","connection": [{"querySql": ["select fid,f_diccode,concat(substr(qhcode,1,2),'0000') as partition_no from nannd.test1"],"jdbcUrl": ["jdbc:oracle:thin:@192.168.22.115:1521/init"]}]}},"writer": {"name": "starrockswriter","parameter": {"username": "root","password": "root","database": "","table": "test2","column": ["fid","f_diccode","partition_no"],"preSql": ["truncate table des.test2"],"postSql": [],"jdbcUrl": "jdbc:mysql://192.168.10.103:9030","loadUrl": ["192.168.10.101:8030","192.168.10.102:8030","192.168.10.103:8030"],"loadProps": {"format": "json","strip_outer_array": true}}}}]}
}
  • OracleReader的配置说明见:

 https://github.com/alibaba/DataX/blob/master/introduction.md

https://github.com/alibaba/DataX/blob/master/oraclereader/doc/oraclereader.md

  • StarRocksWriter的配置说明见:官网

使用 DataX 导入 | StarRocks

(2)同步mysql库的数据至starrocks:mysql2starrocks.json

{"job": {"setting": {"speed": {"channel": 1},"errorLimit": {"record": 0,"percentage": 0}},"content": [{"reader": {"name": "mysqlreader","parameter": {"username": "root","password": "root","column": ["OBJECTID","xmmc","shengmc","shimc","xianmc",],"connection": [{"table": ["init2.test6"],"jdbcUrl": ["jdbc:mysql://192.168.22.156:3306/init2"]}]}},"writer": {"name": "starrockswriter","parameter": {"username": "root","password": "root","database": "des3","table": "test7","column": ["OBJECTID","shengmc","shimc","xianmc",],"preSql": [],"postSql": [],"jdbcUrl": "","loadUrl": ["192.168.10.101:8030","192.168.10.102:8030","192.168.10.103:8030"],"loadProps": {"format": "json","strip_outer_array": true}}}}]}
}
  • MysqlReader的配置说明见:

https://github.com/alibaba/DataX/blob/master/mysqlreader/doc/mysqlreader.md

  • StarRocksWriter的配置说明见:官网

(3)同步tidb库的数据至starrocks:tidb2starrocks.json

{"job": {"setting": {"speed": {"channel": 1},"errorLimit": {"record": 0,"percentage": 0}},"content": [{"reader": {"name": "mysqlreader","parameter": {"username": "root","password": "root@sq2023","connection": [{"querySql": ["select id,member_id,create_time,update_time,now() as run_dt from test2"],"jdbcUrl": ["jdbc:mysql://192.168.22.143:4000/init1"]}]}},"writer": {"name": "starrockswriter","parameter": {"username": "root","password": "root","database": "des1","table": "test3","column": ["id","member_id","create_time","update_time","run_dt"],"preSql": [],"postSql": [],"jdbcUrl": "","loadUrl": ["192.168.10.101:8030","192.168.10.102:8030","192.168.10.103:8030"],"loadProps": {"format": "json","strip_outer_array": true}}}}]}
}

 ps:从tidb数据读取数据,采用的read插件还是MysqlReder,不赘述。

四、常见问题记录

4.1 常规排查方案

   例如:针对配置文件job.json启动导入任务,设置JVM 调优参数(--jvm="-Xms6G -Xmx6G")以及日志等级(--loglevel=debug),日志等级用来任务失败时打印更详细的作业执行信息

python datax/bin/datax.py --jvm="-Xms6G -Xmx6G" --loglevel=debug datax/job/job.json

4.2 时区问题

    如果源数据库与目标数据库时区不同,需要命令行中添加 -Duser.timezone=GMTxxx 选项设置源数据库的时区信息。例如,源库使用 UTC 时区,则启动任务时需添加参数 -Duser.timezone=GMT+0

4.3 性能调优

4.3.1 合理拆分任务

    合理配置任务参数,让DataX任务拆分为多个Task,同时,提升DataX Channel并发数。以mysqlreader为例,就要合理配置splitPk参数,如果splitPk不填写(包括不提供splitPk或者splitPk值为空),DataX会视作使用单通道同步该表数据。

4.3.2 配置堆内存

   当提升DataX Job内Channel并发数时,内存的占用也会显著增加,因为DataX作为数据交换通道,在内存中会缓存较多的数据。例如Channel中会有一个Buffer,作为临时的数据交换的缓冲区,而在部分Reader和Writer的中,也会存在一些Buffer,为了防止OOM等错误,调大JVM的堆内存。调整JVM xms xmx参数的两种方式:一种是直接更改datax.py脚本;另一种是在启动的时候,在命令行添加对应的参数,如下:(xms:初始化堆内存; xmx:堆最大内存)

python datax/bin/datax.py --jvm="-Xms6G -Xmx6G" --loglevel=debug datax/job/job.json

ps:建议将初始化堆内存与堆最大内存配置一致,这样可以让同步数据处理起来更快,也可以避免内存的抖动。

4.3.3 任务限速

  使用DataX进行数据同步的另一个优势是可以限速,进而降低同步过程中对业务库的压力影响。DataX3.0提供了包括通道(并发)、记录流、字节流三种流控模式,可以方便的控制同步作业速度,让同步作业在库可以承受的范围内达到最佳的同步速度。以最常用的字节流限速为例:

  • 修改datax/conf/core.json,限制单个chanel的速度为2M (2*1024*1024= 2097152 byte):

"speed": {"byte": 2097152,},
  • 同时修改作业json部分的速度限制,例如限制为4M(这样任务会用4/2=2个channel并发进行任务),修改:
    "job": {"setting": {"speed": {"byte" : 4194304}},...}
  • 以及:
"speed": {"channel": 5,"byte": 1048576,"record": 10000}

4.3.4 读取StarRocks数据

   StarRocks兼容MySQL协议,当我们需要将StarRocks中的数据同步至其他数据库时,可以使用mysqlreader来直接读取,但这种JDBC的方式性能可能不是很好,推荐Flink Connector或者Spark Connector来进行处理。

参考文章:

第3.5章:StarRocks数据导入--DataX StarRocksWriter_datax-starrockswriter-CSDN博客

http://www.yayakq.cn/news/507223/

相关文章:

  • 式网站app开发和网站开发
  • 网站源码怎么打开linux做网站服务器
  • 域名注册平台的网站怎么做网络设计图怎么做
  • 网站开发的常见编程语言有哪些创建门户网站
  • 音乐网站建设的目的广告设计与制作是做什么的
  • 薛华成 旅游网站建设网站搭建学什么软件
  • 织梦如何做淘宝客网站成都做网站建设公司
  • 网站开发网站建设制作费用微信公众号人工服务电话
  • asp网站安全性app免费制作自助工厂
  • 网站上面的小图标怎么做的gridlocked wordpress
  • 在线分析网站重庆地产网站建设
  • 大气网站背景图wordpress首页设置成文章还是页面
  • 长沙网站设计公司重庆标志品牌形象设计包括什么
  • 济南网站维护公司优化师的工作内容
  • 昆山网站建设 熊掌号唐山的网站建设
  • 做图素材网站开通会员哪个好个人网站建设方案书备案
  • 专业做淘宝网站公司网站建设方投资成本
  • 怎样做美瞳网站网址导航浏览器
  • 珠海网站公司wordpress svg logo
  • 网站免费推广方法网络营销推广方式包括什么
  • 个人网站icp备案号做货代用什么网站找客户
  • 精品课程网站设计哪款地图可以看到实时街景
  • 网站做标题有用吗互联网0成本暴利项目
  • 宁波网站建设哪家公司好著名网站设计
  • 素材网站哪个最好qq营销软件开发
  • 云南网站建设专业品牌合肥网站外包
  • 中山有网站建设公司吗wordpress php 得到页面描述
  • 政元软件做网站如何查询网站
  • 做设计有哪些地图网站制作好的网页
  • 买完域名网站怎么设计商城版网站制作