当前位置: 首页 > news >正文

如何评估网站全球最受欢迎的网站

如何评估网站,全球最受欢迎的网站,企业网站建设需要资料,静态企业网站下载1.YOLOv8 2.模型详解 2.1模型结构设计 和YOLOv5对比: 主要的模块: ConvSPPFBottleneckConcatUpsampleC2f Backbone ----->Neck------>head Backdone 1.第一个卷积层的 kernel 从 6x6 变成了 3x3 2. 所有的 C3 模块换成 C2f,可以发现…

1.YOLOv8

2.模型详解

2.1模型结构设计

  • 和YOLOv5对比:

 

 

主要的模块: 

  • Conv
  • SPPF
  • Bottleneck
  • Concat
  • Upsample
  • C2f 

Backbone ----->Neck------>head

  • Backdone 

1.第一个卷积层的 kernel 从 6x6 变成了 3x3
2. 所有的 C3 模块换成 C2f,可以发现多了更多的跳层连接和额外的 Split 操作 

3.Backbone 中 C2f 的 block 数从 3-6-9-3 改成了 3-6-6-3

  • Neck 

1.去掉了 Neck 模块中的 2 个卷积连接层 

  • head 

1.不再有之前的 objectness 分支,只有解耦的分类和回归分支,并且其回归分支使用了 Distribution Focal Loss 中提出的积分形式表示法。 

  • Objectness:Objectness本质上是物体存在于感兴趣区域内的概率的度量。如果我们Objectness很高,这意味着图像窗口可能包含一个物体
  • Distribution Focal Loss:针对的是目标框坐标不够灵活的问题,尤其在边界不够清晰明确的情况下(如遮挡等)。
  • Distribution Focal Loss论文:https://arxiv.org/pdf/2006.04388.pdf

2.2Loss 计算

2.2.1正负样本分配策略

YOLOv8 算法中直接引用了 TOOD 的 TaskAlignedAssigner

TOOD 的 TaskAlignedAssigner:https://arxiv.org/pdf/2108.07755.pdf

总结:TaskAligned使用分类得分和IoU的高阶组合来衡量Task-Alignment的程度

t=s^{\alpha}\times_{}u_{}^{\beta}

2.2.2分类损失(VFL)

样本不均衡,正样本极少,负样本极多,需要降低负样本对 loss 的整体贡献了,于是用了focal loss。VFL当然具备focal loss拥有的所有特性。

VFL独有的:

(1)学习 IACS 得分( localization-aware 或 IoU-aware 的 classification score)

(2)如果正样本的 gt_IoU 很高时,则对 loss 的贡献更大一些,可以让网络聚焦于那些高质量的样本上,也就是说训练高质量的正例对AP的提升比低质量的更大一些。
 

\mathrm{VFL(p,q)=\begin{cases}-q(qlog(p)+(1-q)log(1-p))&q>0\\-\alpha p^\gamma log(1-p)&q=0,\\\end{cases}}

 2.2.3目标识别损失1(DFL)

将框的位置建模成一个 general distribution,让网络快速的聚焦于和目标位置距离近的位置的分布。

2.2.4目标识别损失2(CIOU Loss) 

\begin{aligned}\mathrm{CIoU}&=\mathrm{IoU}-\frac{\mathrm{D}_2^2}{\mathrm{D}_C^2}-\alpha\mathrm{v}\\\\\alpha&=\frac{\mathrm{v}}{(1-\mathrm{IoU})+\mathrm{v}}\\\\\mathrm{v}&=\frac{4}{\pi^2}(\arctan\frac{\mathrm{w}^{\mathrm{gt}}}{\mathrm{h}^{\mathrm{gt}}}-\arctan\frac{\mathrm{w}}{\mathrm{h}})^2\end{aligned}

2.2.5样本匹配


(1)抛弃了Anchor-Base方法,转而使用Anchor-Free方法

(2)找到了一个替代边长比例的匹配方法——TaskAligned

Anchor-Based是什么?——Anchor-Based是指的利用anchor匹配正负样本,从而缩小搜索空间,更准确、简单地进行梯度回传,训练网络。

Anchor-Based方法的劣势是什么?——但是因为下列这些劣势,我们抛弃掉了anchor 这一多余的步骤。

anchor也会对网络的性能带来影响:

(1)如巡训练匹配时较高的开销

(2)有许多超参数需要人为尝试调节等

Anchor-free的优势是什么?——Anchor-free模型则摒弃或是绕开了锚的概念,用更加精简的方式来确定正负样本,同时达到甚至超越了两阶段anchor-based的模型精度,并拥有更快的速度。

为与NMS(non maximum suppression非最大抑制)搭配,训练样例的Anchor分配需要满足以下两个规则:——

正常对齐的Anchor应当可以预测高分类得分,同时具有精确定位;

不对齐的Anchor应当具有低分类得分,并在NMS阶段被抑制。

基于上述两个目标,TaskAligned设计了一个新的Anchor alignment metric 来在Anchor level 衡量Task-Alignment的水平。并且,Alignment metric 被集成在了 sample 分配和 loss function里来动态的优化每个 Anchor 的预测。

3.代码实践

3.1目标检测 

from ultralytics import YOLO
from PIL import Image
# 加载模型
model = YOLO('yolov8x.pt')  # 加载官方模型# 使用模型进行预测
results = model("E:\BaiduNetdiskDownload\people.jpg")  # 对图像进行预测
# 展示结果
for r in results:im_array = r.plot(font_size=0.01,conf=False)  # 绘制包含预测结果的BGR numpy数组im = Image.fromarray(im_array[..., ::-1])  # RGB PIL图像im.show()  # 显示图像im.save('results.jpg')  # 保存图像

3.2目标分割

from ultralytics import YOLO
from PIL import Image
# 载入一个模型
model = YOLO('yolov8x-seg.pt')    # 载入官方模型# 使用模型进行预测
results = model("E:\BaiduNetdiskDownload\people.jpg")  # 对一张图像进行预测
for r in results:im_array = r.plot(font_size=0.01,conf=False,labels=False)  # 绘制包含预测结果的BGR numpy数组im = Image.fromarray(im_array[..., ::-1])  # RGB PIL图像im.show()  # 显示图像im.save('results.jpg')  # 保存图像

3.3目标分类

from ultralytics import YOLO
from PIL import Image
# 加载模型
model = YOLO('yolov8n-cls.pt')  # 加载官方模型# 使用模型进行预测
results = model('E:\BaiduNetdiskDownload\people.jpg')  # 对图像进行预测
for r in results:im_array = r.plot(font_size=0.01,conf=False,labels=False)  # 绘制包含预测结果的BGR numpy数组im = Image.fromarray(im_array[..., ::-1])  # RGB PIL图像im.show()  # 显示图像im.save('results.jpg')  # 保存图像

3.4目标姿态

from ultralytics import YOLO
from PIL import Image
# 加载模型
model = YOLO('yolov8n-pose.pt')  # 加载官方模型# 使用模型进行预测
results = model('E:\BaiduNetdiskDownload\people.jpg')  # 对图像进行预测
for r in results:im_array = r.plot(font_size=0.01,conf=False,labels=False)  # 绘制包含预测结果的BGR numpy数组im = Image.fromarray(im_array[..., ::-1])  # RGB PIL图像im.show()  # 显示图像im.save('results.jpg')  # 保存图像

http://www.yayakq.cn/news/690918/

相关文章:

  • 网站设网页设计四平seo
  • 住房城乡建设部网站主页关键词的优化方案
  • 网站开发都需要哪些图wordpress导航栏锚点
  • 国家城乡住房建设厅网站住房和城乡建设部网站标准下载
  • 系部网站建设需求分析运行需求软件开发和研发的区别
  • 广州网站整站优化seolxw
  • 绍兴建设开发有限公司网站网站维护是谁做的
  • 深圳高端网站建设费用app 网站 区别
  • 重庆网站建设 快速建站酒东莞网站建设技术支持
  • 网站博客程序做网站+广告费+步骤
  • app平台网站搭建个人做淘宝客网站有哪些
  • 济南网站制作创意学院网站建设项目概述
  • wordpress站关注别人短视频平台的运营策略有哪些
  • 什么样的蓝色做网站做好看安徽鸿顺鑫城建设集团网站
  • 做网站卖什么发财jquery
  • 做进口货的电商网站在线文字logo设计
  • 网站管理工作网站后台文件下载
  • 郑州建设教育培训中心网站dw软件可以做哪些网站
  • 网站内容丰富wordpress打开空白
  • 厦门seo网站建设费用网络推广网络营销外包
  • 网站制作文章wordpress 1g 不够用
  • 如何降低网站相似度简述建设一个商务网站的过程
  • 网站调用字体库网站地图 制作工具
  • 公司网站怎样添加和修改内容聊城做手机网站
  • 湖州医院网站建设方案上海行业门户网站建设应用
  • 首涂模板网站外贸订单怎样去寻找
  • 广西网站建设的公司哪家好南宁网站推广优化
  • 怎么加入网站做微商城广州优秀网站设计
  • 迅博威网站建设社区问答网站开发
  • 学习网站建设建议调查问卷运营软件有哪些