当前位置: 首页 > news >正文

旅游网站优化方案dw如何创建网页链接

旅游网站优化方案,dw如何创建网页链接,wordpress统计,生活家装饰公司口碑怎么样您是否应该删除、插入或估算? 世界上没有完美的数据集。每个数据科学家在数据探索过程中都会有这样的感觉: df.info()看到类似这样的内容: 大多数 ML 模型无法处理 NaN 或空值,因此如果您的特征或目标包含这些值,则在…

您是否应该删除、插入或估算?

img

世界上没有完美的数据集。每个数据科学家在数据探索过程中都会有这样的感觉:

df.info()

看到类似这样的内容:

img

大多数 ML 模型无法处理 NaN 或空值,因此如果您的特征或目标包含这些值,则在尝试将模型拟合到数据之前对它们进行适当处理非常重要。

在本文中,我将探讨处理时间序列数据集中的空值/缺失数据的 3 种简单方法。

1. 删除空值

这可能是处理缺失数据最简单、最直接的方法:将其删除。

# 删除所有列中的所有空值
df.dropna(inplace=True)

默认情况下,pandas 的dropna 函数会全面搜索(所有列)空值,并删除任何列中存在空值的行**。**但是,可以使用各种参数进行修改。

在本数据集中,请注意 NMHC(GT) 列只有 914 个非空值。因此,如果我们删除所有空值,我们的模型最终最多只能得到 914 行(可能更少)。这与原来的 9,357 行相比大幅下降!

通过指定列的子集 ,pandas 将仅删除数据框中特定列为空的行。

df.dropna(subset=['CO(GT)','PT08.S1(CO)'], inplace=True)

这样,我们可以对方法进行混合和搭配,在某些列中删除空值,并以不同的方式处理其他列。

您还可以通过将参数how设置为“all”来指定是否仅删除所有列都为空的行。how 的默认值为“any”。

2. 插值空值

填充空值的另一种简单方法是通过插值。Pandas 的 interpolate 方法默认使用线性插值。

线性插值基本上取空值前后的两个值,并在两者之间创建一条线。然后使用这条线来估计缺失数据点的值。Pandas**的插值方法假设每个数据点的间距相等。**如果您没有针对每个可能的时间戳设置一行,只要您有日期时间索引,就可以将插值方法设置为“时间”。这样,如果您有两行相隔 >1 个间隔(例如 >1 天或 1 小时),插值将考虑这个距离。

如果这是第一个索引,由于空值前面没有值,因此不会进行插值。

img

在这种情况下,插值很简单,因为在两个已知值的中间正好有 1 个空值。所有值都以 1 小时为间隔。索引 10 处的空值将只是前后值的平均值 (0.65)。

如果存在 2 个或更多连续的 NaN,则将根据它们与已知值之间的距离对它们进行插值。

**您可以通过limit**关键字参数设置要插入的连续 NaN 数量限制。如果有大量连续 NaN,您可能希望在某个插值点之后删除它们,因为*每次插值都会给算法带来不确定性。*插值越多 = 不确定性越大,尤其是在时间序列的情况下。

3. 归纳空值

我要介绍的最后一种方法是归纳法。归纳法本质上意味着用数据的平均值或中位数填充空值。

最简单的方法是使用 pandas 的 fillna 并取整列的中值。

df.fillna(df['CO(GT)'].median())

但对于时间序列,整个数据集的中值通常并不准确。时间序列数据通常具有季节性模式,使用情况会根据一天中的小时、星期几、月份等而变化。

对于这个例子,我决定使用该小时的中位数来估算 CO(GT) 列**。**

为了能够用中位数进行估算,我想出了自己的解决方案,因为没有直接的方法或库可以做到这一点(据我所知)。 我必须首先创建一个数据框,其中包含各个小时的所有中位数。

# 创建包含按小时分组的每列中位数的数据框
hour_df = pd.DataFrame(df.groupby([df.index.hour]).median())
hour_df.reset_index(inplace=True)

按小时对中位数进行分组的结果数据框。仅显示前 5 小时 + 3 列。

接下来,我创建了一个名为 get_hour_median 的函数。虽然我仅针对 CO(GT) 列展示了该函数,但我使该函数足够灵活,以便它可以处理任何列名。

def get_hour_median(hour,col_name):median = hour_df[hour_df['Datetime']==hour][col_name].values[0]return median

然后我使用 apply 和另一个自定义函数将此函数应用于 CO(GT) 列。

# 重置日期时间索引以便在下面的函数中更轻松地处理
df.reset_index(inplace=True)# 获取数据框行并返回中值(如果行为空),否则返回原始值。
def fill_with_hourly_median(row,col_name):if pd.isnull(row[col_name]):return get_hour_median(row['Datetime'].hour,col_name)else:return row[col_name]# 将 fill_with_hourly_median 应用于 CO(GT) 列
df['CO(GT)'] = df.apply(fill_with_hourly_median, axis=1, col_name='CO(GT)')

CO(GT) 列现在应该填写相应小时的中值而不是 NaN。

选择哪一个?

很多时候,您会针对不同的列使用不同方法的组合。例如,由于线性插值不会填充列中的第一个值,因此如果数据框开头有空行,则可以在数据框中间的行被插值后删除这些行。

如果您有大量数据,且空值不多,则删除几行不会产生太大影响。在这种情况下,删除通常是我的首选方法,因为我将输入模型的所有数据都是实际数据。

对于数据集中偶尔出现的小间隙(1-2 行缺失),我通常会使用插值法。但是,如果间隙较大,且存在大量连续的空值,我会考虑使用中位数,直到达到某个阈值(>6-10,但可能取决于数据的粒度和模式的一致性),之后我会开始删除行。

如您所见,虽然处理缺失数据是一种常见现象,但处理方法有很多考虑因素。我提到的方法绝不是唯一的方法,但仅使用这 3 种方法就可以做很多事情。

我建议 彻底探索您的时间序列数据,方法是绘制图表并确定零点在哪里、差距是大还是小以及存在哪些类型的季节性模式。随着时间和实践,您将对如何最好地处理数据中的差距有更好的直觉。

参考

  1. Vito,Saverio. (2016). Air Quality. UCI Machine Learning Repository. https://doi.org/10.24432/C59K5F.
http://www.yayakq.cn/news/830281/

相关文章:

  • 网站的风格指的是什么基于jsp的电商网站开发
  • 博客网站搭建石家庄学做网站建设培训学校
  • 西安学校部门定制网站建设公司蓝色门户网站
  • 聊城宏远网站建设优化wordpress音乐直链插件
  • 浙江省工程建设协会网站怎样自学设计室内装修效果图
  • 百度商桥网站加不上本科专业建设规划
  • 网站开发有前途手机可以建网站嘛建站好吗
  • 多个域名绑定同一网站吗益阳建站网站制作
  • 武进做网站的公司做公司网站需要注意哪些
  • 建设机械网站案例分析湖南广告优化
  • 家电维修网站建设表情包生成器在线制作gif
  • 网站优化是往新闻中心发新闻吗做那种网站赚钱
  • 突出网站建设 突出能力网站建设免费国外
  • 北京建站报价做h5的免费软件
  • 网站ui设计基础口碑做团购网站
  • 网站底部有很多图标凡客的网站功能
  • 网站建设分金手指专业二七校区网站建设
  • 网站开发个人技能织梦移动网站
  • 个体工商户经营范围做网站上海太江建设网站
  • 杭州有实力的网站开发frontpage网站建设论文
  • 搜网站关键词装修风格大全2021新款简约
  • .php的网站是怎么做的安徽合肥网站制作
  • 有网站源代码能自己做网站吗网站建站建设网站
  • 网站构架图规范网站维护 建设 管理
  • 东莞多语言网站建设旅游网站前端模板
  • 爱站seo工具wordpress require
  • 黄冈市网站建设建网站需要多少钱和什么条件才能建
  • 写出网站版面布局设计步骤dw8做网站步骤图
  • 南昌营销型网站建设申请免费空间
  • 企业对做营销型网站有什么优势如何让自己的网站排在前面