当前位置: 首页 > news >正文

成都网站建设公司官网网站设计软件培训

成都网站建设公司官网,网站设计软件培训,中职网站建设课件,jqueryui做的网站随机森林(Breiman 2001a)(RF)是一种非参数统计方法,需要没有关于响应的协变关系的分布假设。RF是一种强大的、非线性的技术,通过拟合一组树来稳定预测精度模型估计。随机生存森林(RSF&#xff0…

随机森林(Breiman 2001a)(RF)是一种非参数统计方法,需要没有关于响应的协变关系的分布假设。RF是一种强大的、非线性的技术,通过拟合一组树来稳定预测精度模型估计。随机生存森林(RSF)(Ishwaran和Kogalur,2007;Ishwaraan,Kogalur、Blackstone和Lauer(2008)是Breimans射频技术的延伸从而降低了对时间到事件数据的有效非参数分析。
在这里插入图片描述
R语言随机森林进行生存分析需要使用到randomForestSRC包,是对Breimans随机森林的统一处理用于生存、回归和分类问题。randomForestSRC包还有一个用于做图的ggRandomForests包,搭配使用,今天咱们来介绍一下怎么使用randomForestSRC包进行随机森林生存分析,内容有点多,咱们分2章来介绍。
咱们先导入数据和R包

library(ggRandomForests)
library(randomForestSRC)
library(ggplot2)
library("dplyr")
pbc<-read.csv("E:/r/test/pbc2.csv",sep=',',header=TRUE)

在这里插入图片描述
这是一个胆管炎数据(公众号回复:胆管炎数据2,可以获得数据),years:生存时间,status:结局指标,是否死亡,treatment是否DPCA治疗,age年龄,sex性别,ascites是否有腹水,hepatom是否有肝肿大,spiders是否有蜘蛛痣,edema水肿的级别,bili胆红素,chol胆固醇,albumin白蛋白,copper尿酮,alk碱性磷酸酶,sgot:SGOT评分,trig甘油三酯,platelet血小板,prothrombin凝血酶时间,stage组织学分型
我们对数据处理一下,把treatment这个变量变成因子

pbc$treatment<-factor(pbc$treatment)

接下来咱们把数据分成两组,有treatment数据的为测试组,treatment数据缺失的为对照组。

pbc.trial <- pbc %>% filter(!is.na(treatment))
pbc.test <- pbc %>% filter(is.na(treatment))

我们先用生存分析做一遍,等下可以和随机森林进行比较,接下来我们用gg_survival对测试组生成生存分析的数据,这个函数挺方便使用的,生成了生存分析的详尽数据

gg_dta <-gg_survival(interval = "years",censor = "status",by = "treatment",data = pbc.trial,conf.int = 0.95)

在这里插入图片描述
绘图

plot(gg_dta) +labs(y = "Survival Probability", x = "Observation Time (years)",color = "Treatment", fill = "Treatment") +theme(legend.position = c(0.2, 0.2)) +coord_cartesian(y = c(0, 1.01))

在这里插入图片描述
或者绘制成这种累积风险图

plot(gg_dta, type = "cum_haz") +labs(y = "Cumulative Hazard", x = "Observation Time (years)",color = "Treatment", fill = "Treatment") +theme(legend.position = c(0.2, 0.8)) +coord_cartesian(ylim = c(-0.02, 1.22))

在这里插入图片描述
咱们还可以进行断点分层分析,假如咱们对bili这个指标分层4个层(0, 0.8, 1.3, 3.4, 29)

pbc.bili <- pbc.trial
pbc.bili$bili_grp <- cut(pbc.bili$bili, breaks = c(0, 0.8, 1.3, 3.4, 29))
plot(gg_survival(interval = "years", censor = "status", by = "bili_grp",data = pbc.bili), error = "none") +labs(y = "Survival Probability", x = "Observation Time (years)",color = "Bilirubin")

在这里插入图片描述
接下来咱们进行随机森林的生存分析,nsplit定义的是随机拆分数,一般默认10次,na.action这里如果选择na.impute就是对缺失数据进行插补,如果选择na.omit就是对缺失数据删除,importance = TRUE这里会计算重要的变量并且进行排序

rfsrc_pbc <- rfsrc(Surv(years, status) ~ ., data = pbc.trial,nsplit = 10, na.action = "na.impute",tree.err = TRUE,importance = TRUE)

查看下基本信息,默认ntree是1000颗数,No. of variables tried at each split: 5这里表示每次都随机取5个变量用于截点。在每个节点,当终端节点包含三个或更少的观测值时停止。Rfsrc函数采用了一个随机logrank分割规则,该规则从nsplit=10中随机选择分割点值。

rfsrc_pbc

在这里插入图片描述
程序选择63.2%的样本做估计,剩余36.8%作为袋外数据(OOB)用于测试。gg_error函数对随机林(rfsrc_pbc)对象进行操作以提取错误作为森林中树木数量的函数的估计。

plot(gg_error(rfsrc_pbc))

在这里插入图片描述
我们可以看到100颗数后,误差已经很稳定了。gg_rfsrc函数可以提取随机森林中袋外数据(OOB)的估计值

out<- gg_rfsrc(rfsrc_pbc)

在这里插入图片描述
进一步绘图

ggRFsrc <- plot(gg_rfsrc(rfsrc_pbc), alpha = 0.2) +theme(legend.position = "none") +labs(y = "Survival Probability", x = "Time (years)") +coord_cartesian(ylim = c(-0.01, 1.01))
ggRFsrc

在这里插入图片描述
对治疗组和未治疗组进行分类绘图

plot(gg_rfsrc(rfsrc_pbc, by = "treatment")) +theme(legend.position = c(0.2, 0.2)) +labs(y = "Survival Probability", x = "Time (years)") +coord_cartesian(ylim = c(-0.01, 1.01))

在这里插入图片描述
使用验证组就行数据评估

rfsrc_pbc_test <- predict(rfsrc_pbc, newdata = pbc.test,na.action = "na.impute",importance = TRUE)

绘图

plot(gg_rfsrc(rfsrc_pbc_test), alpha=.2) +#scale_color_manual(values = strCol) +theme(legend.position = "none") +labs(y = "Survival Probability", x = "Time (years)") +coord_cartesian(ylim = c(-0.01, 1.01))

在这里插入图片描述
因为咱们选的是treatment缺失的为验证集,这里就不能分组了。
随机林不是一种简约方法,而是使用数据集中所有可用的变量以构建响应预测器。此外,与参数模型不同,随机森林不会要求明确说明协变量对响应的函数形式。因此对于随机森林模型的变量选择,没有明确的p值/显著性检验。相反,RF通过分割规则确定哪些变量对预测有贡献优化,最佳选择分离观察的变量。
下面来做变量的重要性,VIMP方法使用一种预测误差方法,包括依次对每个变量进行“noising-up”。 由于VIMP是排列前后OOB预测误差的差异VIMP值表示错误指定会降低森林中的预测准确性。VIMP接近零表示该变量对预测准确性没有任何贡献,并且负值表示当变量被错误指定时预测精度提高。

plot(gg_vimp(rfsrc_pbc)) +theme(legend.position = c(0.8, 0.2)) +labs(fill = "VIMP > 0")

在这里插入图片描述
本期先介绍到这里,未完待续。

http://www.yayakq.cn/news/218443/

相关文章:

  • 建站公司兴田德润好不好wordpress更换IP
  • 大埔县住房和城乡规划建设局网站彩票网站开发制作h5
  • 凯里网站开发gzklyy网站建设华威公司怎么样
  • 怎么做有优惠券的网站做网站的过程
  • 学生简单网站制作教程企业网站开发市场
  • 做民宿上几家网站好百度站长平台网站
  • 网站建设有没有资质深圳专业做网站的
  • 做外贸网站卖什么好漯河网上商城网站建设
  • 做城市分类信息网站好做吗工作表格excel下载
  • 深圳市宝安区网站建设网站开发国外研究现状
  • 2023年天津市施工招标公告时间网络优化公司哪家好
  • 大连网站建设-网龙科技销售机械设备做网站
  • 江苏网站设计网站建设而
  • 毕业设计选择做网站的意义北京建设网办公大厅
  • 郑州哪家网站建设好怎么建立公司网页
  • 东莞建设网站官网住房和城乡自己做网站 需要会什么6
  • 做任务佣金网站源码东明县网站建设
  • 江苏建设厅官方网站人工费企业网站seo外包
  • 深圳市外贸网站建设wordpress用oss图床
  • 人事处网站建设绩效目标概述网页制作是建网站的第几步
  • 九江 网站建站 设计 公司中际城市建设有限公司网站
  • 保护环境做网站素材不用登录就能玩的游戏
  • 中国能源建设集团网站wordpress接口开发
  • 女人网站源码足球比赛直播哪里看
  • 创新的手机网站建设wordpress按照浏览量排序
  • 浅谈博物馆网站建设意义wordpress同步qq空间
  • 平度市城市建设局网站前端网站建设插件
  • 怎么自己做网站的步骤系统开发北京网站建设
  • 佛山知名网站建设公司如何做网页推广的网页
  • 免费的推广网站深圳市宝安区邮政编码多少