当前位置: 首页 > news >正文

电子商务网站开发环境网站开发难吗

电子商务网站开发环境,网站开发难吗,山东企业网站建设报价,视频制作流程【深度学习】图像去噪 是在 【深度学习】计算机视觉 系列文章的基础上,再次针对深度学习(尤其是图像去噪方面)的基础知识有更深入学习和巩固。 1 DnCNN 1.1 网络结构 1.1.1 残差学习 1.1.2 Batch Normalization (BN) 1.1.2.1 背景和目标…

【深度学习】图像去噪 是在 【深度学习】计算机视觉 系列文章的基础上,再次针对深度学习(尤其是图像去噪方面)的基础知识有更深入学习和巩固。

1 DnCNN

1.1 网络结构

1.1.1 残差学习

1.1.2 Batch Normalization (BN)

1.1.2.1 背景和目标

批归一化是DnCNN第二个特点。在阅读代码的时候,我对model.train()model.eval()产生了疑问,它们的作用是什么?

一般用法是:在训练开始之前写上 model.trian() ,在测试时写上 model.eval() 。

  • model.train():启用BN层和Dropout。
  • model.eval():不启用BN层和Dropout。

Dropout此处不做过多解释,对于BN层,model.train()是保证BN层能够用到每一批数据的均值和方差;model.eval()是保证BN层能够用全部训练数据的均值和方差。训练完 train 样本后,生成的模型 model 要用来测试样本了,在 model(test) 之前,需要加上model.eval(),否则的话,有输入数据,即使不训练,它也会改变权值。

如果在测试的时候启用了Dropout,那么网络会随机丢弃某几个神经元,这样神经网络每一次生成的结果不是固定的,生成的质量也不稳定。那BN是如何影响网络的?这就要先学习BN具体是如何实现的。

1.1.2.2 核心问题

在CNN训练时,绝大多数都采用mini-batch使用随机梯度下降算法进行训练,那么随着输入数据的不断变化,以及网络中参数不断调整,网络的各层输入数据的分布则会不断变化,那么各层在训练的过程中就需要不断的改变以适应这种新的数据分布,从而造成网络训练困难,难以拟合的问题。

我的理解:针对网络的每一(例如x层),我们需要保证不管输入什么样的图片(数据),经过网络层层输入到达x层后,它们的数据分布总是类似的,这样我们就能针对x层的特点去修改x层的权重,慢慢拟合,而不是刚适应了某张图片的数据特点,换了一张图片又要大幅度调整。

BN算法解决的就是这样的问题,他通过对每一层的输入进行归一化,保证每层的输入数据分布是稳定的,从而达到加速训练的目的。

1.1.2.3 步骤
  1. Standardization:首先对𝑚个𝑥进行 Standardization,得到 zero mean unit variance的分布𝑥̂ 。
    在这里插入图片描述
    其中, x k x^{k} xk表示输入数据的第k维, E [ x k ] E[x^{k}] E[xk]表示该维的平均值, V a r [ x k ] \sqrt{Var[x^{k}]} Var[xk] 为标准差。

  2. scale and shift:然后再对𝑥̂ 进行scale and shift,缩放并平移到新的分布𝑦,具有新的均值𝛽方差𝛾。
    我们思考一个问题,在第一步中,减均值除方差得到的分布是正态分布,我们能否认为正态分布就是最好或最能体现我们训练样本的特征分布呢?不能。这种分布不一定是前面一层要学习到的数据分布,这样强行归一化就会破坏掉刚刚学习到的特征,比如数据本身就很不对称(不符合正态分布),或者激活函数未必是对“方差为1”的数据最好的效果,比如Softmax激活函数,在-1~1之间的函数的梯度不大,那么非线性变换的作用就不能很好的体现。换言之就是,减均值除方差操作后可能会削弱网络的性能。
    针对上述问题,BN算法在第二步中设置了两个可学习的变量γ和β,然后用这两个可学习的变量去还原上一层应该学到的数据分布。
    在这里插入图片描述

1.1.2.4 BN算法在训练和测试时的应用

了解完BN的原理后我又有个疑问,如果训练过程中启用了BN,但是在测试的时候没有启用BN,那么输入的测试图片在x层没有经过处理,它的分布可能不适用于我们训练好的权重,影响模型效果。而且DnCNN最终的输出是噪声图,所以我们不需要担心正则化会影响原始图片或者输入图片,为什么要禁用呢?其实我这里的启用和禁用理解错了。

训练时:首先提取每次迭代时的每个mini-batch的平均值和方差进行归一化,再通过两个可学习的变量恢复要学习的特征。

测试时:没有mini-batch了,即平均值为所有mini-batch的平均值的平均值,而方差为每个batch的方差的无偏估计。
在这里插入图片描述
所以BN的启用和不启用,不是说这层的存在与否,而是说这层的参数是否固定。


参考来源:

【Pytorch】model.train() 和 model.eval() 原理与用法
深度学习——Batch Normalization算法原理和作用
Batch Normalization的原理和作用
什么是无偏估计?
无偏估计
均值和期望的关系

http://www.yayakq.cn/news/699404/

相关文章:

  • 龙岗网站建设找深一设计家官网下载
  • 陕西有哪些公司是网站建设网站开发与设计实验报告
  • 网站哪家做的好赤峰网站设计公司
  • 杭州网站建设专业公司营口规划建设局网站
  • 做网页要去哪个网站编程入门基础知识
  • 做微博长图的网站flash 如何做游戏下载网站
  • 免费建站有哪些网站wordpress连接代码
  • 为什么php做不了大网站网站正在建设中的英文
  • 有没有专门做一件代发的网站系统开发报告
  • 淘宝客网站源码和模版有什么区别建网站需要什么设计专业
  • 网站开发价格预算云南省建设厅网站查询
  • 深圳市房产管理局官方网站wordpress创建单页
  • 利用帝国cms网站建设树枝seo
  • 网站设计案例网站大数据分析师
  • 杭州有做网站什么app推广佣金多
  • 瑞安外贸网站建设广西住房和建设厅官网
  • 网站建设怎么更改图片公司高管培训课程
  • 百度开户做网站2400把网站从空间删除
  • 株洲网站设计网站商品页面设计
  • 春暖花开 wordpress主题湖北搜索引擎优化
  • 华为云网站定制怎么查询自己房产信息
  • 六安网站优化快手短视频小程序
  • 网页设计视频网站建设公司网站建设的改进的建议
  • 网站建设这块是怎么挣钱的免费浏览的网站入口
  • 网站运营者网址四川住房和建设厅网站
  • 网站建设分金手指专业二七微信小程序服务器费用
  • 绵阳网站的建设可做设计任务的网站
  • 重庆网站设计最加科技怎么看一个网站是用什么程序做的
  • 网站开发需要用到什么技术北京十大建筑设计公司
  • 做网站网站建筑设计图设计说明