当前位置: 首页 > news >正文

经典网站建设行业网站的特点

经典网站建设,行业网站的特点,企业网站建设兴田德润地址,新零售网络推广方案一、二叉搜索树的概念 二叉搜索树又称二叉排序树,它或者是一棵空树,或者是具有以下性质的二叉树: 1、若它的左子树不为空,则左子树上所有节点的值都小于根节点的值; 2、若它的右子树不为空,则右子树上所有节点的值都…

一、二叉搜索树的概念

二叉搜索树又称二叉排序树,它或者是一棵空树,或者是具有以下性质的二叉树:

1、若它的左子树不为空,则左子树上所有节点的值都小于根节点的值;

2、若它的右子树不为空,则右子树上所有节点的值都大于根节点的值;

3、它的左右子树也分别为二叉搜索树

下图就是一个二叉搜索树:

二、二叉树的定义

template<class K>
struct BSTreeNode
{BSTreeNode<K>* _right;BSTreeNode<K>* _left;K _key;BSTreeNode(const K& key = K()):_right(nullptr),_left(nullptr),_key(key){}
};template<class K>
class BSTree
{typedef BSTreeNode<K> Node;
public:bool find(const K& key){}//查找bool insert(const K& key){}//插入 bool erase(const K& key){}//删除
private:Node* _root;
};

三、二叉搜索树的查找节点

非递归写法:

如果root为空,那么查找失败,没有要查找的节点;如果root不为空,比较root->key和要查找的值,如果要查找的值大于root->key,就到右子树接着找,反之,到左子树接着找。找到返回true,没有找到返回false。

    bool find(const K& key){Node* cur = _root;while (cur){if (key > cur->_key){cur = cur->_right;}else if (key < cur->_key){cur = cur->_left;}else{return true;}}return false;}

递归写法:

查找思想还是和非递归一样的,如果root为空,返回false,如果root->key大于要找的值,那么递归到左子树去找(转换成一个子问题),反之,递归到右子树去找。

    bool findR(const K& key){return _findR(_root, key);}bool _findR(Node* root, const K& key){if (root == nullptr)return false;if (root->_key == key){return true;}else if(root->_key < key){return _findR(root->_right, key);}else{return _findR(root->_left, key);}}

四、二叉搜索树的插入节点

非递归写法:

要插入一个数据,首先得找到插入的位置,所以插入分为两大步:

1、找到要插入的位置

如果树中存在一个节点的key与要插入的数相同,则不会插入。找位置的时候要同时有一个指针记录父节点,走到空就结束

2、插入数据

判断插入的数据比父节点大还是小,如果小则插在左边,反之则插在右边

    bool insert(const K& key){if (_root == nullptr){_root = new Node(key);}else{Node* cur = _root;Node* parent = cur;while (cur){if (key > cur->_key){parent = cur;cur = cur->_right;}else if (key < cur->_key){parent = cur;cur = cur->_left;}else{return false;}}if (key > parent->_key){parent->_right = new Node(key);}else{parent->_left = new Node(key);}}return true;}

递归写法:

    bool insertR(const K& key){return _insertR(_root, key);}//这里要传引用,我们就不需要找父节点了bool _insertR(Node*& root, const K& key){if (root == nullptr){root = new Node(key);return true;}if (root->_key < key){return _insertR(root->_right, key);}else if (root->_key > key){return _insertR(root->_left, key);}else{return false;}}

五、二叉搜索树的删除节点

删除节点大致可分为三种情况:

1、要删除节点左右都为空;

2、要删除节点左为空或右为空;

3、要删除节点左右都不为空。

第一点和第二点又可以看成一点。

要注意特殊情况:要删除的节点是根节点。

非递归写法:

    bool erase(const K& key){Node* cur = _root;Node* parent = cur;while (cur){if (key > cur->_key){parent = cur;cur = cur->_right;}else if (key < cur->_key){parent = cur;cur = cur->_left;}//找到要被删的节点了else{//1、要删除的这个节点是叶子节点或度为1(可直接删除)if (cur->_left == nullptr){if (cur == _root){_root = cur->_right;}else{if (parent->_right == cur){parent->_right = cur->_right;}else{parent->_left = cur->_right;}}}else if(cur->_right == nullptr){if (cur == _root){_root = cur->_left;}else{if (parent->_right = cur){parent->_right = cur->_left;}else{parent->_left = cur->_left;}}}//2、要删除的这个节点度为2(替换法)else{//找左树中的最大值或右树中的最小值与被删节点交换,再删除//找左树中的最大值Node* leftMax = cur->_left;Node* PLeftMax = cur;while (leftMax->_right){PLeftMax = leftMax;leftMax = leftMax->_right;}swap(cur->_key, leftMax->_key);//交换值//删除leftMaxif (PLeftMax->_right == leftMax){if (leftMax->_right == nullptr){PLeftMax->_right = leftMax->_left;}else{PLeftMax->_right = leftMax->_right;}}if (PLeftMax->_left == leftMax){if (leftMax->_right == nullptr){PLeftMax->_left = leftMax->_left;}else{PLeftMax->_left = leftMax->_right;}}cur = leftMax;}delete cur;return true;}}return false;}

递归写法:

    bool eraseR(const K& key){return _eraseR(_root, key);}bool _eraseR(Node*& root, const K& key){if (root == nullptr)return false;if (root->_key < key){return _eraseR(root->_right, key);}else if (root->_key > key){return _eraseR(root->_left, key);}else{Node* del = root;//找到了被删除节点//1、左为空或右为空或左右都为空if (root->_left == nullptr){root = root->_right;}else if (root->_right == nullptr){root = root->_left;}//2、左右都不为空else{//左树找最大值Node* LeftMax = root->_left;while (LeftMax->_right){LeftMax = LeftMax->_right;}swap(root->_key, LeftMax->_key);//删除LeftMax节点return _eraseR(root->_left, key);}delete del;return true;}}

六、二叉搜索树的应用

1、K模型(也就是我们后面学是set):K模型即只有key作为关键码,结构中只需要存储Key即可,关键码即为需要搜索到的值。

2、KV模型(也就是我们后面学是map):每一个关键码key,都有与之对应的值Value,即<Key, Value>的键值对。

七、二叉搜索树的实现

template<class K>
struct BSTreeNode
{BSTreeNode<K>* _right;BSTreeNode<K>* _left;K _key;BSTreeNode(const K& key = K()):_right(nullptr),_left(nullptr),_key(key){}
};template<class K>
class BSTree
{typedef BSTreeNode<K> Node;
public:BSTree():_root(nullptr){}BSTree(const BSTree<K>& tree){_root = Copy(tree._root);}BSTree<K>& operator=(BSTree<K> tmp){swap(_root, tmp._root);return *this;}~BSTree(){Destory(_root);}bool insert(const K& key){if (_root == nullptr){_root = new Node(key);}else{Node* cur = _root;Node* parent = cur;while (cur){if (key > cur->_key){parent = cur;cur = cur->_right;}else if (key < cur->_key){parent = cur;cur = cur->_left;}else{return false;}}if (key > parent->_key){parent->_right = new Node(key);}else{parent->_left = new Node(key);}}return true;}void InOrder(){_InOrder(_root);cout << endl;}bool find(const K& key){Node* cur = _root;while (cur){if (key > cur->_key){cur = cur->_right;}else if (key < cur->_key){cur = cur->_left;}else{return true;}}return false;}bool erase(const K& key){Node* cur = _root;Node* parent = cur;while (cur){if (key > cur->_key){parent = cur;cur = cur->_right;}else if (key < cur->_key){parent = cur;cur = cur->_left;}//找到要被删的节点了else{//1、要删除的这个节点是叶子节点或度为1(可直接删除)if (cur->_left == nullptr){if (cur == _root){_root = cur->_right;}else{if (parent->_right == cur){parent->_right = cur->_right;}else{parent->_left = cur->_right;}}}else if(cur->_right == nullptr){if (cur == _root){_root = cur->_left;}else{if (parent->_right = cur){parent->_right = cur->_left;}else{parent->_left = cur->_left;}}}//2、要删除的这个节点度为2(替换法)else{//找左树中的最大值或右树中的最小值与被删节点交换,再删除//找左树中的最大值Node* leftMax = cur->_left;Node* PLeftMax = cur;while (leftMax->_right){PLeftMax = leftMax;leftMax = leftMax->_right;}swap(cur->_key, leftMax->_key);//交换值//删除leftMaxif (PLeftMax->_right == leftMax){if (leftMax->_right == nullptr){PLeftMax->_right = leftMax->_left;}else{PLeftMax->_right = leftMax->_right;}}if (PLeftMax->_left == leftMax){if (leftMax->_right == nullptr){PLeftMax->_left = leftMax->_left;}else{PLeftMax->_left = leftMax->_right;}}cur = leftMax;}delete cur;return true;}}return false;}//-----------------------------------递归写法---------------------------------------bool findR(const K& key){return _findR(_root, key);}bool insertR(const K& key){return _insertR(_root, key);}bool eraseR(const K& key){return _eraseR(_root, key);}private:bool _eraseR(Node*& root, const K& key){if (root == nullptr)return false;if (root->_key < key){return _eraseR(root->_right, key);}else if (root->_key > key){return _eraseR(root->_left, key);}else{Node* del = root;//找到了被删除节点//1、左为空或右为空或左右都为空if (root->_left == nullptr){root = root->_right;}else if (root->_right == nullptr){root = root->_left;}//2、左右都不为空else{//左树找最大值Node* LeftMax = root->_left;while (LeftMax->_right){LeftMax = LeftMax->_right;}swap(root->_key, LeftMax->_key);//删除LeftMax节点return _eraseR(root->_left, key);}delete del;return true;}}Node* Copy(Node* root){if (root == nullptr)return nullptr;Node* Croot = new Node(root->_key);Croot->_left = Copy(root->_left);Croot->_right = Copy(root->_right);return Croot;}void Destory(Node*& root){if (root == nullptr){return;}/*if (root->_left == nullptr && root->_right == nullptr){delete root;root = nullptr;return;}*/Destory(root->_left);Destory(root->_right);delete root;root = nullptr;}bool _insertR(Node*& root, const K& key){if (root == nullptr){root = new Node(key);return true;}if (root->_key < key){return _insertR(root->_right, key);}else if (root->_key > key){return _insertR(root->_left, key);}else{return false;}}bool _findR(Node* root, const K& key){if (root == nullptr)return false;if (root->_key == key){return true;}else if(root->_key < key){return _findR(root->_right, key);}else{return _findR(root->_left, key);}}void _InOrder(Node* root){//中序if (root == nullptr){return;}_InOrder(root->_left);cout << root->_key << " ";_InOrder(root->_right);}private:Node* _root;
};
http://www.yayakq.cn/news/494258/

相关文章:

  • 软件公司招聘网站林萌荣温州市网页制作
  • wordpress模板调用自定义插件成都网站排名优化报价
  • 东营建设网站开锁行业在58做网站有活吗
  • 广东网站建设公司排名在哪个网站注册域名
  • 动漫网站设计与实现做购物网站实例代码
  • 可以做c语言任务的网站wordpress换域名搬家
  • 做加油机公司网站wordpress 后端是什么
  • 做签证宾馆订单用啥网站网站建设与优化及覆盖率方案
  • 建设网站转赚钱吗网站怎么做优化排名
  • 微信怎么注册公众号百度快照优化
  • 建站成功是怎么回事图片转视频在线制作
  • 做企业门户网站免费asp网站源码
  • 网站是怎么优化的做芯片哪个网站推广
  • 南宁市住房和城乡建设局网站网络服务器搭建与配置
  • 为企业为什么做网站游戏软件开发流程
  • 网站建设淘宝客模板人社网站和微信平台建设方案
  • 大连 响应式网站制作wordpress房产
  • 宁波做网站公司百度网络小说排行榜
  • 珠海网站建设优化推广wordpress主题公园下载
  • 产品网站系统网站系统改教程
  • 北京最好的网站制作公司公众号开发菜单
  • 网站开发的国内外现状江西短视频搜索seo推荐
  • 新网站关键词怎么优化小说关键词搜索器
  • 简述电子商务网站的内容设计与开发深圳做棋牌网站建设找哪家公司好
  • 网站seo设计linode搭建wordpress
  • 广州工程建设网站90设计网官网首页
  • 示范高校建设网站相亲网站开发与设计报告
  • wordpress中文文章排版插件沈阳seo网站推广
  • 邯郸网站建设做公司宁夏省建设厅网站
  • 进一步强化网站建设微信app下载安装2024最新版