当前位置: 首页 > news >正文

建设信用中国网站医疗保险网站

建设信用中国网站,医疗保险网站,提交谷歌网站,信誉好的唐山网站建设目录 1.摘要2.算法原理3.结果展示4.参考文献5.获取代码 1.摘要 本文提出了一种新型的元启发式优化算法——梯度优化器(Gradient-based Optimizer, GBO)。GBO算法灵感来源于牛顿法,采用两个主要操作:梯度搜索规则(Grad…

目录

    • 1.摘要
    • 2.算法原理
    • 3.结果展示
    • 4.参考文献
    • 5.获取代码


在这里插入图片描述

1.摘要

本文提出了一种新型的元启发式优化算法——梯度优化器(Gradient-based Optimizer, GBO)。GBO算法灵感来源于牛顿法,采用两个主要操作:梯度搜索规则(Gradient Search Rule, GSR)和局部逃逸操作算子(Local Escaping Operator, LEO),通过一组向量来探索搜索空间。GSR利用基于梯度的方法增强探索倾向并加速收敛速度,以实现更优的搜索空间定位,LEO则帮助GBO逃离局部最优解。

2.算法原理

梯度搜索规则(GSR)

在梯度搜索规则(GSR)中,GBO算法通过控制向量的移动,可以在可行域内更有效地搜索并寻找到更优的位置。考虑到许多优化问题不可微分,因此采用数值梯度方法。为了根据方程推导GSR,需要使用泰勒级数来计算函数的一阶导数:
f ( x + Δ x ) = 0 f ( x ) + f ′ ( x 0 ) Δ x + f ′ ′ ( x 0 ) Δ x 2 2 ! + f ( 3 ) ( x 0 ) Δ x 3 3 ! + ⋯ f ( x − Δ x ) = f ( x ) − f ′ ( x 0 ) Δ x + f ′ ′ ( x 0 ) Δ x 2 2 ! − f ( 3 ) ( x 0 ) Δ x 3 3 ! + ⋯ \begin{gathered} f(x+\Delta x)=0f(x)+f^{^{\prime}}(x_0)\Delta x+\frac{f^{^{\prime\prime}}(x_0)\Delta x^2}{2!}+\frac{f^{^{(3)}}(x_0)\Delta x^3}{3!}+\cdots \\ f(x-\Delta x)=f(x)-f^{^{\prime}}(x_{0})\Delta x+\frac{f^{^{\prime\prime}}(x_{0})\Delta x^{2}}{2!}-\frac{f^{^{(3)}}(x_{0})\Delta x^{3}}{3!}+\cdots \end{gathered} f(x+Δx)=0f(x)+f(x0)Δx+2!f′′(x0)Δx2+3!f(3)(x0)Δx3+f(xΔx)=f(x)f(x0)Δx+2!f′′(x0)Δx23!f(3)(x0)Δx3+
一阶导数的中心差分形式:
f ′ ( x ) = f ( x + Δ x ) − f ( x − Δ x ) 2 Δ x f^{^{\prime}}(x)=\frac{f(x+\Delta x)-f(x-\Delta x)}{2\Delta x} f(x)=xf(x+Δx)f(xΔx)
整理为迭代形式:
x n + 1 = x n − 2 Δ x × f ( x n ) f ( x n + Δ x ) − f ( x n − Δ x ) x_{n+1}=x_n-\frac{2\Delta x\times f(x_n)}{f(x_n+\Delta x)-f(x_n-\Delta x)} xn+1=xnf(xn+Δx)f(xnΔx)x×f(xn)

x n x_n xn的邻近位置是 x n + Δ x x_n+\Delta x xn+Δx x n − Δ x x_n-\Delta x xnΔx,在GBO算法中,这些邻近位置被种群中的另外两个位置(向量)所替代。由于 f ( x ) f(x) f(x)是一个最小化问题,位置 x n + Δ x x_n+\Delta x xn+Δx的适应度比 x n x_n xn差,而 x n − Δ x x_n-\Delta x xnΔx x n x_n xn好。因此,GBO算法用更好的位置 x b e s t x_{best} xbest,即 x n x_n xn邻域内的位置, 替换 x n − Δ x x_n-\Delta x xnΔx,用较差的位置 x w o r s t x_{worst} xworst代替 x n x_n xn邻域内的较差位置,替换 x n + Δ x x_n+\Delta x xn+Δx。此外,提出的算法使用位置 x n x_n xn而非其适应度 f ( x n ) f(x_n) f(xn):
G S R = r a n d n × 2 Δ x × x n ( x w o r s t − x b e s t + ε ) GSR=randn\times\frac{2\Delta x\times x_{n}}{(x_{\mathrm{worst}}-x_{best}+\varepsilon)} GSR=randn×(xworstxbest+ε)x×xn

在提出的GBO算法中,梯度搜索规则(GSR)考虑了优化过程中的随机行为,以促进探索和逃离局部最优:
Δ x = r a n d ( 1 : N ) × ∣ s t e p ∣ s t e p = ( x b e s t − x r 1 m ) + δ 2 δ = 2 × r a n d × ( ∣ x r 1 m + x r 2 m + x r 3 m + x r 4 m 4 − x n m ∣ ) \begin{aligned} & \Delta x=rand(1:N)\times|step| \\ & step=\frac{(x_{best}-x_{r1}^{m})+\delta}{2} \\ & \delta=2\times rand\times\left(\left|\frac{x_{r1}^{m}+x_{r2}^{m}+x_{r3}^{m}+x_{r4}^{m}}{4}-x_{n}^{m}\right|\right) \end{aligned} Δx=rand(1:N)×stepstep=2(xbestxr1m)+δδ=2×rand×( 4xr1m+xr2m+xr3m+xr4mxnm )

为了更有效地利用 x n x_n xn附近的区域,GBO算法中引入了移动方向(DM)。这一机制通过使用最佳向量 x b e s t x_{best} xbest,并将当前向量 x n x_n xn ( x b e s t − x n ) (x_{best}-x_n) (xbestxn)方向移动来操作。这样的设计不仅加强了局部搜索的能力,还有助于提升算法的收敛速度,从而使GBO算法在寻找最优解的讨程中更加高效:
D M = r a n d × ρ 2 × ( x b e s t − x n ) DM=rand\times\rho_{2}\times(x_{best}-x_{n}) DM=rand×ρ2×(xbestxn)

因此,位置更新为:
X 1 n m = X n m − G S R + D M X 1 n m = x n m − r a n d n × ρ 1 × 2 Δ x × x n m ( x w o r s t − x b e s t + ε ) + r a n d × ρ 2 × ( x b e s t − x n m ) \begin{aligned} & X\mathbf{1}_{n}^{m}=X_n^m-GSR+DM \\ & X\mathbf{1}_{n}^{m}=x_n^m-randn\times\rho_1\times\frac{2\Delta x\times x_n^m}{(x_{\mathrm{worst}}-x_{\mathrm{best}}+\varepsilon)}+rand\times\rho_2\times(x_{\mathrm{best}}-x_n^m) \end{aligned} X1nm=XnmGSR+DMX1nm=xnmrandn×ρ1×(xworstxbest+ε)x×xnm+rand×ρ2×(xbestxnm)

局部逃逸操作算子(LEO)

在这里插入图片描述

为了增强GBO算法解决复杂问题的效率,引入了局部逃逸操作算子(LEO)。LEO通过整合多个解决方案来显著改变解的位置,这些方案包括最佳位置 x b e s t x_{best} xbest,两个随机解 x m r 1 x_{mr1} xmr1 x m r 2 x_{mr2} xmr2,以及一个新生成的随机解 x m k x_{mk} xmk
x k m = L 2 × x p m + ( 1 − L 2 ) × x r a n d x_{k}^{m}=L_{2}\times x_{p}^{m}+(1-L_{2})\times x_{rand} xkm=L2×xpm+(1L2)×xrand

在这里插入图片描述

伪代码

在这里插入图片描述

3.结果展示

在这里插入图片描述
在这里插入图片描述

4.参考文献

[1] Ahmadianfar I, Bozorg-Haddad O, Chu X. Gradient-based optimizer: A new metaheuristic optimization algorithm[J]. Information Sciences, 2020, 540: 131-159.

5.获取代码

http://www.yayakq.cn/news/239647/

相关文章:

  • 企业网站优化费用龙华区民治街道城市更新
  • 网站建设万网网站制作的服务商
  • 交换广告是两个网站做友情链接吗大学生个体创业的网站建设
  • 昆明网站建设外包wordpress微信qq登录界面
  • 淘宝网站开发慕枫宁波网站建设
  • 网站建设的电话销售好做不首次登陆建设银行网站图文解说
  • 网站公司网站定制iview做的网站
  • asp 网站建设教程免费制作公司网站
  • 巩义企业网站托管代运营公司seo公司 上海
  • 用php做网站和go做网站校园网站建设服务
  • 网站怎么找回密码c 网站建设教程视频教程
  • 示范高职建设网站软文网站平台
  • 如何把代码放在网站首页教程马大云湘潭
  • aspcms上传到虚拟主机后打开网站太原做网站哪里好
  • 做外贸如何建网站辽宁省建设工程信息网人员解除
  • dw进行网站建设包含哪些步骤注册网站时审核是人工审核吗还是电脑审核
  • 云服务器做视频网站微信里的小程序怎么添加
  • 门户网站建设成本网站建设如何财务处理
  • 设备网站开发青岛网站建站公司
  • 餐饮网站设计h5制作软件电脑
  • 做公司网站需要什么手续网页游戏网站模压板
  • 站长之家psd英铭科技做网站和设计制作更专业
  • 长春网站制作平台济南网站建设找聚搜网络
  • 做网站哪个效果好网站开发(源代码)
  • 手机端网站开发要注意什么网站建设哪家公司好
  • 江苏泰州建设局网站东莞seo优化关键词排名
  • 网站几几年做的怎么查企业网站建设知识
  • 智慧养老网站开发网站建设制作 优帮云
  • 广元商城网站开发网站建设开发收费
  • 儿童教育自适应网站模板网站运营问题