当前位置: 首页 > news >正文

学院 网站 两学一做响应云网站模板下载

学院 网站 两学一做,响应云网站模板下载,wordpress ssh,百度推广登录入口目录 💥1 概述 📚2 运行结果 🎉3 参考文献 👨‍💻4 Matlab代码 💥1 概述 机器学习是让计算机在没有明确编程的情况下采取行动的科学。在过去的十年中,机器学习为我们提供了自动驾驶汽车&…

       目录

💥1 概述

📚2 运行结果

🎉3 参考文献

👨‍💻4 Matlab代码


💥1 概述

机器学习是让计算机在没有明确编程的情况下采取行动的科学。在过去的十年中,机器学习为我们提供了自动驾驶汽车,实用的语音识别,有效的网络搜索以及对人类基因组的理解大大提高。机器学习在今天是如此普遍,以至于你可能每天使用它几十次而不自知。许多研究人员还认为,这是朝着人类水平的人工智能取得进展的最佳方式。在本代码中,您将了解最有效的机器学习技术,并获得实施它们并让它们为自己工作的练习。更重要的是,您不仅将学习学习的理论基础,还将获得快速有效地将这些技术应用于新问题所需的实践知识。最后,您将了解硅谷在创新方面的一些最佳实践,因为它与机器学习和人工智能有关。本代码广泛介绍了机器学习、数据挖掘和统计模式识别。主题包括:(i)监督学习(参数/非参数算法,支持向量机,内核,神经网络)。(ii)无监督学习(聚类、降维、推荐系统、深度学习)。(iii)机器学习的最佳实践(偏差/方差理论;机器学习和人工智能的创新过程)。本课程还将借鉴众多案例研究和应用,以便您还将学习如何应用学习算法来构建智能机器人(感知、控制)、文本理解(网络搜索、反垃圾邮件)、计算机视觉、医学信息学、音频、数据库挖掘和其他领域。

📚2 运行结果

主函数部分代码:

%% Machine Learning Online Class

%  Exercise 6 | Spam Classification with SVMs

%

%  Instructions

%  ------------

%  This file contains code that helps you get started on the

%  exercise. You will need to complete the following functions:

%

%     gaussianKernel.m

%     dataset3Params.m

%     processEmail.m

%     emailFeatures.m

%

%  For this exercise, you will not need to change any code in this file,

%  or any other files other than those mentioned above.

%

%% Initialization

clear ; close all; clc

%% ==================== Part 1: Email Preprocessing ====================

%  To use an SVM to classify emails into Spam v.s. Non-Spam, you first need

%  to convert each email into a vector of features. In this part, you will

%  implement the preprocessing steps for each email. You should

%  complete the code in processEmail.m to produce a word indices vector

%  for a given email.

fprintf('\nPreprocessing sample email (emailSample1.txt)\n');

% Extract Features

file_contents = readFile('emailSample1.txt');

word_indices  = processEmail(file_contents);

% Print Stats

fprintf('Word Indices: \n');

fprintf(' %d', word_indices);

fprintf('\n\n');

fprintf('Program paused. Press enter to continue.\n');

pause;

%% ==================== Part 2: Feature Extraction ====================

%  Now, you will convert each email into a vector of features in R^n. 

%  You should complete the code in emailFeatures.m to produce a feature

%  vector for a given email.

fprintf('\nExtracting features from sample email (emailSample1.txt)\n');

% Extract Features

file_contents = readFile('emailSample1.txt');

word_indices  = processEmail(file_contents);

features      = emailFeatures(word_indices);

% Print Stats

fprintf('Length of feature vector: %d\n', length(features));

fprintf('Number of non-zero entries: %d\n', sum(features > 0));

fprintf('Program paused. Press enter to continue.\n');

pause;

%% =========== Part 3: Train Linear SVM for Spam Classification ========

%  In this section, you will train a linear classifier to determine if an

%  email is Spam or Not-Spam.

% Load the Spam Email dataset

% You will have X, y in your environment

load('spamTrain.mat');

fprintf('\nTraining Linear SVM (Spam Classification)\n')

fprintf('(this may take 1 to 2 minutes) ...\n')

C = 0.1;

model = svmTrain(X, y, C, @linearKernel);

p = svmPredict(model, X);

fprintf('Training Accuracy: %f\n', mean(double(p == y)) * 100);

%% =================== Part 4: Test Spam Classification ================

%  After training the classifier, we can evaluate it on a test set. We have

%  included a test set in spamTest.mat

% Load the test dataset

% You will have Xtest, ytest in your environment

load('spamTest.mat');

fprintf('\nEvaluating the trained Linear SVM on a test set ...\n')

p = svmPredict(model, Xtest);

fprintf('Test Accuracy: %f\n', mean(double(p == ytest)) * 100);

pause;

%% ================= Part 5: Top Predictors of Spam ====================

%  Since the model we are training is a linear SVM, we can inspect the

%  weights learned by the model to understand better how it is determining

%  whether an email is spam or not. The following code finds the words with

%  the highest weights in the classifier. Informally, the classifier

%  'thinks' that these words are the most likely indicators of spam.

%

% Sort the weights and obtin the vocabulary list

[weight, idx] = sort(model.w, 'descend');

vocabList = getVocabList();

fprintf('\nTop predictors of spam: \n');

for i = 1:15

    fprintf(' %-15s (%f) \n', vocabList{idx(i)}, weight(i));

end

fprintf('\n\n');

fprintf('\nProgram paused. Press enter to continue.\n');

pause;

%% =================== Part 6: Try Your Own Emails =====================

%  Now that you've trained the spam classifier, you can use it on your own

%  emails! In the starter code, we have included spamSample1.txt,

%  spamSample2.txt, emailSample1.txt and emailSample2.txt as examples. 

%  The following code reads in one of these emails and then uses your 

%  learned SVM classifier to determine whether the email is Spam or 

%  Not Spam

% Set the file to be read in (change this to spamSample2.txt,

% emailSample1.txt or emailSample2.txt to see different predictions on

% different emails types). Try your own emails as well!

filename = 'spamSample1.txt';

% Read and predict

file_contents = readFile(filename);

word_indices  = processEmail(file_contents);

x             = emailFeatures(word_indices);

p = svmPredict(model, x);

fprintf('\nProcessed %s\n\nSpam Classification: %d\n', filename, p);

fprintf('(1 indicates spam, 0 indicates not spam)\n\n');

🎉3 参考文献

​[1]谢宜鑫. 基于机器学习的建筑空调能耗数据挖掘和模式识别[D].北京交通大学,2019.

👨‍💻4 Matlab代码

http://www.yayakq.cn/news/357754/

相关文章:

  • 设计手机网站页面尺寸大小济南 域名注册 网站建设
  • 移动网站建设方案青岛爱城市网app官方网站
  • 万网速成网站有哪些 功能经典的jq查询网站
  • 建网站出现ie6宁波seo营销平台
  • 厦门微网站建设玉树商城网站建设
  • 建站模板更改自己做视频网站收益怎么来
  • 淄博网站制作企业营销网站建设实训的报告
  • 北京建设网站官网专门做网络营销的公司
  • 角门网站建设wordpress博客添加ico图标
  • 珠海市研发网站建设免费源码分享
  • 广州手机网站建设联系电话响应式网站切图
  • 做网站书籍北京注册建设公司网站
  • 东营两学一做网站人力资源外包服务包括哪些
  • 外企网站建设公司排名芜湖的网站建设
  • 漳州做网站制作哈尔滨建设网站成本
  • 贴心的网站优化公司网站建设基本要素
  • 网站开发确认表遥阳科技网站建设
  • 商业网站建设wordpress开发服务器配置
  • 做网站三河网站品牌词如何优化
  • 自建团体电子商务网站建设成本广州市场调研公司
  • 太原网站建设公司专业的家居网站建设
  • 为何网站建设公司报价不同响应式学校网站模板
  • 如何做网站专题欧洲网站后缀
  • 注册了域名之后怎么做网站口碑好的定制网站建设服务商
  • 桂林做网站的公司有哪些广告网站建设与制作公司
  • 公司网站备案网址室内设计师联盟账号
  • 手机网站 数据库做电影网站都需要什么工具
  • 做网站用tomcat福田网站建设效果
  • 电商网站排行那些网站可以做h5
  • 线上广告平台昆明seo工资