当前位置: 首页 > news >正文

怎么做整人点不完的网站新手做网站选材

怎么做整人点不完的网站,新手做网站选材,上海电子商城网站制作,河南如何建网站要什么条件1.卷积神经网络的结构 在之前的博客《深度学习—简单的卷积神经网络》,仅由卷积层构成网络的全部,这还不是标准的网络结构,本文将继续介绍标准的卷积神经网络结构有哪些? 深度学习基础—简单的卷积神经网络https://blog.csdn.net…

1.卷积神经网络的结构


        在之前的博客《深度学习—简单的卷积神经网络》,仅由卷积层构成网络的全部,这还不是标准的网络结构,本文将继续介绍标准的卷积神经网络结构有哪些?

深度学习基础—简单的卷积神经网络icon-default.png?t=O83Ahttps://blog.csdn.net/sniper_fandc/article/details/141688769?fromshare=blogdetail&sharetype=blogdetail&sharerId=141688769&sharerefer=PC&sharesource=sniper_fandc&sharefrom=from_link

        假设需要进行手写数字识别,输入图片是32*32*3大小的RGB图片,下面我们来构建一个卷积神经网络实现这个功能:

        注:该网络和经典网络LeNet-5非常相似,灵感也来源于此。LeNet-5是多年前Yann LeCun创建的,但是我们所采用的模型并不是LeNet-5,但是受它启发,许多参数选择都与LeNet-5相似。

(1)卷积层

        第一层使用过滤器f大小为5×5,步长s是1,padding是0,过滤器个数为6,那么输出为28×28×6。将这层标记为CONV1,它用了6个过滤器,增加了偏差,应用了非线性函数,可能是ReLU非线性函数,最后输出CONV1的结果。

(2)池化层

        然后构建一个池化层,这里选择最大池化,参数f=2,步长s=2,padding为0(本网络的padding均为0,后续不再说明),过滤器的选择表示层的高度和宽度会减少一半。因此输出为14×14,通道数量保持不变,所以最终输出为14×14×6,将该输出标记为POOL1。

(3)关于层的划分

        在卷积神经网络中关于卷积的划分主要有两类(即层的划分):一类是卷积层作为单独的一层,池化层作为单独的一层;另一类是把一个卷积层和一个池化层一并称为一层。由于池化层没有权重和参数(只有超参数),统计神经网络的层数时通常只统计有权重和参数的层,因此这里把CONV1和POOL1统称为Layer1。Layer2层结构类似,具体参数如上图,这里不再赘述。

(4)全连接层

        将POOL2的输出转化为一个大小为400的向量,把平整化结果想象成某个包含神经元的层,然后利用这400个单元构建下一层。下一层含有120个单元,这就是第一个全连接层,标记为FC3。这400个单元与120个单元紧密相连,这就是全连接层,也是一个标准的神经网络层。它的权重矩阵W[3]的维度为120×400,偏差参数b[3]的维度为120×1。

        把FC3层的输出作为FC4的输入,FC4层有84个神经元,因此输出的结果是长度84的向量。最后,用这84个单元填充一个softmax单元。如果我们想通过手写数字识别来识别手写0-9这10个数字,这个softmax就会有10个输出。

(5)激活值维度

        这里提醒两点:第一,池化层没有参数;第二卷积层的参数相对较少。其实,许多参数都存在于神经网络的全连接层。观察可发现,随着神经网络的加深,激活值尺寸会逐渐变小,如果激活值尺寸下降太快,也会影响神经网络性能。示例中,激活值尺寸在第一层为6000,然后减少到1600,慢慢减少到84,最后输出softmax结果。我们发现,许多卷积网络都具有这些属性,模式上也相似。

        一个卷积神经网络包括卷积层、池化层和全连接层,如何构建高效的神经网络,整合这些基本模块,需要对模块有深入的理解,最简单高效的方式就是大量阅读文献和案例,尤其是不同领域的融汇贯通。

2.为什么要使用卷积


        假设有一张32×32×3维度的图片,使用卷积的情况下,比如示例的第一层有6个大小为5×5的过滤器,输出维度为28×28×6。32×32×3=3072,28×28×6=4704。而构建一个普通的神经网络,其中一层含有3072个单元,下一层含有4074个单元,两层中的每个神经元彼此相连,然后计算权重矩阵,它等于4074×3072≈1400万,所以要训练的参数很多。虽然以现在的技术,可以用1400多万个参数来训练网络,因为这张32×32×3的图片非常小,训练这么多参数没有问题。但是如果这是一张1000×1000的图片,权重矩阵会变得非常大。仅仅这个卷积层的参数数量,每个过滤器都是5×5,一个过滤器有25个参数,再加上偏差参数,那么每个过滤器就有26个参数,一共有6个过滤器,所以参数共计156个,参数数量还是很少。

        卷积神经网络参数少的原因有如下两点:

(1)参数共享

        如果特征检测过程中,比如垂直边缘检测如果适用于图片的某个区域,那么它也可能适用于图片的其他区域,那么使用一个过滤器就可以提取多个区域中的特征,这样就大大减少了参数的数量。

(2)稀疏连接

        某一个输出值仅与输入图片的过滤器大小范围的像素值有关,比如上图中绿色的0,在3*3的过滤器大小下,仅和输入图片的左上角9个像素有关,其他像素值不影响其输出的大小。这就是稀疏连接,它和全连接概念有重大区别,全连接就是每层神经元的输出和下层神经元的输入均相连,因此参数量巨大。而稀疏连接中,下层和本层的连接关系只受到过滤器大小和位置影响,因此参数量很小。

        神经网络可以通过这两种机制减少参数,以便我们用更小的训练集来训练它,从而预防过度拟合。卷积神经网络善于捕捉平移不变。即使移动少量像素,图片依然清晰可见,因为神经网络的卷积结构使得移动前后图片依然具有非常相似的特征,应该属于同样的输出标记。

http://www.yayakq.cn/news/382883/

相关文章:

  • 常见的网站布局结构注册网站页面跳转错误
  • 社交网站 模板重庆市建设工程信息网络
  • 有没有什么做水利资料的网站gooood谷德设计网官网
  • 三亚做网站推广舟山公司网站制作
  • 网站域名名字wordpress怎么管理首页侧边栏
  • php网站模板下载北京装饰公司一览表
  • 扁平化网站源码wordpress 页面路径
  • 深圳优化网站方法怎么做多个网站单点登录
  • 展示型网站 带后台小程序开发公司主页制作标准
  • 爱站网关键词排名会员管理软件
  • 网站建设与管理的网页为网站制定一个推广计划
  • 网站制作方案答案是螃蟹的迷语一流的盐城网站建设
  • 福山区建设工程质量检测站网站制作房地产网站页面
  • 上海网站开发定制下载软件的网站推荐
  • 注册一个公司需要哪些资料情感网站seo
  • 简单网站开发流程图高明做网站
  • 服务号不认证可做微网站吗公司招聘信息
  • 惠阳网站建设微信小商店如何推广
  • 口碑好的徐州网站建设新昌网站制作
  • 广 做网站蓝光电影下载大型视频网站开发
  • 查公司的网站有哪些有全部公司的网站
  • 关于门户网站建设的请示富阳网站建设推广
  • 微网站开发软件万网云服务器怎么上传网站
  • 天津建设部网站保温急切网
  • 福建漳州网站建设费用柳州门户网站建设公司排名
  • 太仓企业网站建设我想创业做网站
  • 公司网站做推广豆浆怎么制作教程
  • 购物帮–做特惠的导购网站wordpress整合教程
  • 模板式网站价格阿里巴巴官网首页
  • 广州建设交易中心网站wordpress 婚礼主题