当前位置: 首页 > news >正文

哪里有做网站较好的公司网站 ipc 备案

哪里有做网站较好的公司,网站 ipc 备案,平面设计网络课程推荐,学校网站模板 红色摘要 中介分析在流行病学和临床试验中越来越受到关注。在现有的中介分析方法中,流行的联合显着性(JS)检验会产生过于保守的 I 类错误率,因此功效较低。但是,如果在使用 JS 测试高维中介假设时,可以准确控制…

摘要

中介分析在流行病学和临床试验中越来越受到关注。在现有的中介分析方法中,流行的联合显着性(JS)检验会产生过于保守的 I 类错误率,因此功效较低。但是,如果在使用 JS 测试高维中介假设时,可以准确控制族错误率 (FWER) 和错误发现率 (FDR)。分析的核心是基于估计三个分量零假设的比例并推导零 p 值的相应混合分布。

一言以蔽之:计算高维中介假设的校正后的p值

JS-混合方法

新提出的JS-混合方法(joint significance (JS) test) 通过估计三种类型组合零假设的比例来解决JS均匀方法在高维中介假设测试中的过度保守问题。这种方法衍生出控制家庭错误率(FWER)或假发现率(FDR)的显著性规则。通过理论证明、广泛的模拟实验和两个数据例子,JS-混合方法被证明是稳健的,适用于稀疏和密集替代假设,并且在FWER和FDR的控制上比JS-均匀方法提供了更令人满意的结果。特别是,当使用有限样本校正的JS-混合方法时,与基于渐近混合零分布的方法相比,其经验FWER更接近目标的0.05,从而改善了控制效果。

种类型组合零假设的比例

通过估计与三种类型(H00, H01, H10)相关的零假设在所有J个假设中的比例,得到关于这些零假设在数据集中的相对频率的信息。这些估计对于理解和控制假阳性率(FDR)以及在假设检验中区分真正和虚假发现至关重要。π01, π10, 和 π00 分别表示三种类型组合零假设(即,H01, H10, 和 H00)在J个假设中的比例。通过最大化似然函数分别得到αj 和 βj 的估计p1j 和 p2j,由于模型允许它们的似然性可以分解,所以这些估计是独立的,这有助于更准确地估计pmax,j 在零假设H0j中的分布

实现方法

以DNA甲基化在癌症病因中的作用为例,介绍了两个前列腺癌研究案例。以供自学。

浏览关键函数

安装、导入包

# 安装hdmt包
install.packages("HDMT")
# 加载hdmt包
library(HDMT)

导入数据

数据格式:数据集是一个矩阵,其中包含候选中介变量的两列 p 值。第 1 列包含用于测试暴露是否与中介相关的 p 值 (alpha!=0)。第 2 列包含用于测试中介变量是否与暴露调整后的结果相关的 p 值 (beta!=0),需要先使用各类中介方法进行估计。

# 读取数据
data(snp_input)
# 查看数据
head(snp_input)
#         [,1]        [,2]
# [1,] 0.1056981 0.253803463
# [2,] 0.9986436 0.862830855
# [3,] 0.1006569 0.726600653
# [4,] 0.1731411 0.327851970
# [5,] 0.8900695 0.001496449
# [6,] 0.8156905 0.087064991
# 查看数据结构
str(snp_input)
#  num [1:69602, 1:2] 0.106 0.999 0.101 0.173 0.89 ...
input_pvalues <- snp_input# 从输入数据中随机抽取10%的数据【节省时间】
input_pvalues <- input_pvalues[sample(1:nrow(input_pvalues),size=ceiling(nrow(input_pvalues)/10)),]
str(input_pvalues)
# num [1:6961, 1:2] 0.37146 0.00373 0.56406 0.4913 0.78594 ... 

估计三个分量零值比例备用

nullprop <- null_estimation(input_pvalues)
# $alpha10
# [1] 0.06608246
# 
# $alpha01
# [1] 0.4640138
# 
# $alpha00
# [1] 0.4692812
# 
# $alpha1
# [1] 0.933295
# 
# $alpha2
# [1] 0.5353637

计算FDR校正后的p值

# 使用三个分量零值比例,基于所提出的联合显着性混合零方法(JS-mixture)计算估计的逐点 FDR
fdr <- fdr_est(nullprop$alpha00,nullprop$alpha01,nullprop$alpha10, nullprop$alpha1,nullprop$alpha2,input_pvalues,exact=0)
str(fdr)
# num [1:6961] 0.954 0.966 0.957 0.956 0.917 ...

结果解读:如果一个p值对应的FDR小于0.05,那么这个结果被认为是在FDR控制下的显著发现,表明存在关联

 计算FWE校正后的p值的cutoff

# 使用估计的混合零分布计算 p-max 的 FWER 截止值cutoff
fwercut0 <- fwer_est(nullprop$alpha10,nullprop$alpha01,nullprop$alpha00,nullprop$alpha1, nullprop$alpha2,input_pvalues,alpha=0.05,exact=0)   # exact= 0:不估计CDF的近似值
fwercut0
# [1] 1.491624e-05fwercut1 <- fwer_est(nullprop$alpha10,nullprop$alpha01,nullprop$alpha00,nullprop$alpha1, nullprop$alpha2,input_pvalues,alpha=0.05,exact=1) # exact = 1:非参数估计 CDF 的精确方法
fwercut1
# [1] 6.187122e-05

结果解读:fwercut0 是使用估计的混合零分布计算的 p-max 的 FWER 截止值,其中 exact=0 表示使用了不估计累积分布函数(CDF)的近似方法。 在显著性水平 alpha=0.05 下,为了控制家庭错误率(FWER),当候选中介变量的p值小于或等于这个值(即1.354997e-05)时,我们将认为关联性检测达到统计显著性。同理解读fwercut1

作图

用途:观察经过JS 后,校正后的p值被“拉高”了,即更容易达到统计学显著,提高了功效

# 通过上面计算的三个分量零值比例,并使用近似或精确方法计算 pmax 的估计混合零分布分位数--------
pnull <- adjust_quantile(nullprop$alpha00,nullprop$alpha01,nullprop$alpha10,nullprop$alpha1, nullprop$alpha2,input_pvalues,exact=0) # exact=0,推导混合零分布时,不估计CDF的近似方法
str(pnull)
# num [1:6961] 0.000298 0.000596 0.000894 0.001192 0.001489 ...# 使用预期分位数绘制 p-max 的校正分位数-分位数图---------
pmax <- apply(input_pvalues,1,max) # 计算每行的最大值
pnull1 <- adjust_quantile(nullprop$alpha10,nullprop$alpha01,nullprop$alpha00, nullprop$alpha1,nullprop$alpha2,input_pvalues,exact=1) # exact=1,在推导混合零分布时,非参数估计 CDF 的精确方法correct_qqplot(pmax,pnull1)  #如下图展示

参考文献

A Multiple-Testing Procedure for High-Dimensional Mediation Hypotheses: Journal of the American Statistical Association: Vol 117 , No 537 - Get Access (tandfonline.com)icon-default.png?t=N7T8https://www.tandfonline.com/doi/full/10.1080/01621459.2020.1765785​​​​​​

 

http://www.yayakq.cn/news/890566/

相关文章:

  • 云虚拟主机怎么做2个网站企业服务有哪些
  • 企业网站优化服务主要围绕什么小白学做网站教程
  • 做loge的网站重庆建筑信息网查询
  • 建站是什么专业番禺制作网站企业
  • 苏州网站开发建设制作东莞商业网站建设常识
  • 怎么样建立个人网站少林寺网站谁做的
  • 设计网站推荐按钮的作用岳阳建设网站哪家好
  • 响应式网站 做搜索推广缺点网站备案资料表
  • 常州市城乡建设局网站线上线下推广方案
  • 建设网站都需要准备什么网站与微信结合
  • 网站建设中怎么设置默认页织梦做分销网站
  • 如何建设一个自己的网站一般做网站用什么软件
  • 柳州网站建设公司哪家好网络推广方法与技巧
  • 青海省公路建设市场信用信息服务网站金蝶财务软件官网报价
  • 工作室网站建设要多大内存网站可以做匿名聊天吗
  • 网站项目策划大纲买外链
  • 茂名东莞网站建设广告投放基础知识
  • 中英文网站asp怎么做红酒商城网站建设
  • 贴吧网站怎么做开发一个游戏大约要多少钱
  • 男女生做爰视频网站wordpress域名邮箱设置
  • 深圳企业品牌网站设计师门户网站程序
  • 陕西开龄建设网站智能建站工具
  • 不用登录的小游戏网站广州注册公司地址
  • 黄冈网站设计推广哪家好我爱搜罗 wordpress
  • 南京企业网站建设微信公众号推广方法有哪些
  • 电子商务网站建设应用技术彩票网站制作
  • 做微商网站设计做网站文字居中代码
  • 辣条类网站建设规划书成都做网站设
  • 做网站 套用模板之后用什么改哪些网站是做婴童辅食招商的
  • 金沙洲网站建设工作室同城可以做别人一样的门户网站吗