当前位置: 首页 > news >正文

农业畜牧网站开发世界杯网站建设

农业畜牧网站开发,世界杯网站建设,建设一个网站用什么软件,网站开发会议议程范文说明 本篇博客主要是跟着B站中国计量大学杨老师的视频实战深度学习手写字符识别。 第一个深度学习实例手写字符识别 深度学习环境配置 可以参考下篇博客,网上也有很多教程,很容易搭建好深度学习的环境。 Windows11搭建GPU版本PyTorch环境详细过程 数…

说明

本篇博客主要是跟着B站中国计量大学杨老师的视频实战深度学习手写字符识别。
第一个深度学习实例手写字符识别

深度学习环境配置

可以参考下篇博客,网上也有很多教程,很容易搭建好深度学习的环境。
Windows11搭建GPU版本PyTorch环境详细过程

数据集

手写字符识别用到的数据集是MNIST数据集(Mixed National Institute of Standards and Technology database);MNIST是一个用来训练各种图像处理系统二进制图像数据集,广泛应用到机器学习中的训练和测试。
作为一个入门级的计算机视觉数据集,发布20多年来,它已经被无数机器学习入门者应用无数遍,是最受欢迎的深度学习数据集之一。

序号说明
发布方National Institute of Standards and Technology(美国国家标准技术研究所,简称NIST)
发布时间1998
背景该数据集的论文想要证明在模式识别问题上,基于CNN的方法可以取代之前的基于手工特征的方法,所以作者创建了一个手写数字的数据集,以手写数字识别作为例子证明CNN在模式识别问题上的优越性。
简介MNIST数据集是从NIST的两个手写数字数据集:Special Database 3 和Special Database 1中分别取出部分图像,并经过一些图像处理后得到的。MNIST数据集共有70000张图像,其中训练集60000张,测试集10000张。所有图像都是28×28的灰度图像,每张图像包含一个手写数字。

跟着视频跑源码

  1. 下载源码:mivlab/AI_course (github.com)
  2. 下载数据集:https://opendatalab.com/MNIST;网上下载的地址比较多,也可以直接下载B站中国计量大学杨老师的百度网盘位置里的MNIST。

运行源码

  1. 在Pycharm中打开AI_course项目,运行classify_pytorch文件目录里train_mnist.py的Python文件。
    在这里插入图片描述
    train_mnist.py具体的源码如下:
import torch
import math
import torch.nn as nn
from torch.autograd import Variable
from torchvision import transforms, models
import argparse
import os
from torch.utils.data import DataLoaderfrom dataloader import mnist_loader as ml
from models.cnn import Net
from toonnx import to_onnxparser = argparse.ArgumentParser(description='PyTorch MNIST Example')
parser.add_argument('--datapath', required=True, help='data path')
parser.add_argument('--batch_size', type=int, default=256, help='training batch size')
parser.add_argument('--epochs', type=int, default=300, help='number of epochs to train')
parser.add_argument('--use_cuda', default=False, help='using CUDA for training')args = parser.parse_args()
args.cuda = args.use_cuda and torch.cuda.is_available()
if args.cuda:torch.backends.cudnn.benchmark = Truedef train():os.makedirs('./output', exist_ok=True)if True: #not os.path.exists('output/total.txt'):ml.image_list(args.datapath, 'output/total.txt')ml.shuffle_split('output/total.txt', 'output/train.txt', 'output/val.txt')train_data = ml.MyDataset(txt='output/train.txt', transform=transforms.ToTensor())val_data = ml.MyDataset(txt='output/val.txt', transform=transforms.ToTensor())train_loader = DataLoader(dataset=train_data, batch_size=args.batch_size, shuffle=True)val_loader = DataLoader(dataset=val_data, batch_size=args.batch_size)model = Net(10)#model = models.vgg16(num_classes=10)#model = models.resnet18(num_classes=10)  # 调用内置模型#model.load_state_dict(torch.load('./output/params_10.pth'))#from torchsummary import summary#summary(model, (3, 28, 28))if args.cuda:print('training with cuda')model.cuda()optimizer = torch.optim.Adam(model.parameters(), lr=0.01, weight_decay=1e-3)scheduler = torch.optim.lr_scheduler.MultiStepLR(optimizer, [20, 30], 0.1)loss_func = nn.CrossEntropyLoss()for epoch in range(args.epochs):# training-----------------------------------model.train()train_loss = 0train_acc = 0for batch, (batch_x, batch_y) in enumerate(train_loader):if args.cuda:batch_x, batch_y = Variable(batch_x.cuda()), Variable(batch_y.cuda())else:batch_x, batch_y = Variable(batch_x), Variable(batch_y)out = model(batch_x)  # 256x3x28x28  out 256x10loss = loss_func(out, batch_y)train_loss += loss.item()pred = torch.max(out, 1)[1]train_correct = (pred == batch_y).sum()train_acc += train_correct.item()print('epoch: %2d/%d batch %3d/%d  Train Loss: %.3f, Acc: %.3f'% (epoch + 1, args.epochs, batch, math.ceil(len(train_data) / args.batch_size),loss.item(), train_correct.item() / len(batch_x)))optimizer.zero_grad()loss.backward()optimizer.step()scheduler.step()  # 更新learning rateprint('Train Loss: %.6f, Acc: %.3f' % (train_loss / (math.ceil(len(train_data)/args.batch_size)),train_acc / (len(train_data))))# evaluation--------------------------------model.eval()eval_loss = 0eval_acc = 0for batch_x, batch_y in val_loader:if args.cuda:batch_x, batch_y = Variable(batch_x.cuda()), Variable(batch_y.cuda())else:batch_x, batch_y = Variable(batch_x), Variable(batch_y)out = model(batch_x)loss = loss_func(out, batch_y)eval_loss += loss.item()pred = torch.max(out, 1)[1]num_correct = (pred == batch_y).sum()eval_acc += num_correct.item()print('Val Loss: %.6f, Acc: %.3f' % (eval_loss / (math.ceil(len(val_data)/args.batch_size)),eval_acc / (len(val_data))))# 保存模型。每隔多少帧存模型,此处可修改------------if (epoch + 1) % 1 == 0:# torch.save(model, 'output/model_' + str(epoch+1) + '.pth')torch.save(model.state_dict(), 'output/params_' + str(epoch + 1) + '.pth')#to_onnx(model, 3, 28, 28, 'params.onnx')if __name__ == '__main__':train()
  1. 报错:没有cv2,即没有安装OpenCV库。
    在这里插入图片描述
  2. 安装OpenCV库,可以命令行安装,也可以Pycharm中安装。
  • 命令行激活虚拟环境:conda activate deeplearning
  • 命令行安装: pip install opencv-python(也可以Pycharm中下载,可能上梯子安装更快)
    在这里插入图片描述
  1. 再次运行,出现如下图提示,表明需要将下载好的数据集配置到configure中。
    在这里插入图片描述
  2. 加载下载好的数据集,即--datapath=数据集的路径
    在这里插入图片描述
  3. 点击“Run”,开始训练,损失和准确率在一直更新,持续训练,直到模型完成,未改动源码的情况下,训练时间可能需要较长。
    在这里插入图片描述
  4. 在小编的拯救者笔记本电脑上持续训练了10小时才完成最终的模型训练,可以看到训练损失已经很低了,准确度很高水平。
    在这里插入图片描述
  5. 在项目中output文件夹中可以看到已经训练好了很多模型;后面可以利用模型进行推理了。
    在这里插入图片描述

参考

https://zhuanlan.zhihu.com/p/681236488

http://www.yayakq.cn/news/647415/

相关文章:

  • 搭建网站教程视频可视化app开发工具
  • 个人网站怎样申请icp成都政务网站建设
  • 做交易网站什么开发语言营销设计网站建设
  • 做游戏网站要备案吗大连网站策划
  • 中国建设报网站望野原文翻译
  • 电器类网站设计官方网站建设费用应入什么科目
  • 网站建站 上海诸暨网站制作哪些公司制作
  • 网站站seo教程wordpress手机悬浮
  • 网站开发 语言net广告发布计划怎么写
  • 京东网站的建设情况百度网站如何建设
  • 保安做网站上海信息科技有限公司软件网站开发
  • 可做商业用途的图片网站哪款地图可以看到实时街景
  • 域名空间网站建设网络规划设计师第二版pdf百度云
  • 三合一网站管理系统怎么做的wordpress 下载选择
  • 阿里云如何建设网站网站建设特定开发
  • 商标查询网站百度快速排名案例
  • wordpress页面添加seo教程seo教程
  • 最好的免费logo设计网站西安市住房和城乡建设局官网
  • 做网站开发考什么研湛江住房和城乡建设部网站
  • 做网站手机号抓取的公司东莞系统app开发
  • 浙江网站建设公司排名网页设计公司企业文化
  • 农业网站电子商务平台建设方案深圳软件外包公司列表
  • 中级注册安全工程师泰州百度seo
  • 北京市保障性住房建设中心网站深圳建设工程招投标网站
  • 淘宝的网站开发历史及难度宣传片制作公司排行
  • 宁波网站制作公司排名ai免费logo设计一键生成
  • 有哪些建筑设计网站免费的海报模板网站
  • 如何制作网站教程视频网站设计_网站建设_手机网站建设
  • 网站设置不可粘贴做网站需要怎么样的服务器
  • 手机网站建设多钱中国建筑网招聘信息