当前位置: 首页 > news >正文

想建书画网站怎么做的网站编辑器哪个好

想建书画网站怎么做的,网站编辑器哪个好,网站开发的几种语言,西宁做网站君博认同文章目录 Pyspark dataframe创建DataFrame使用Row对象使用元组与scheam使用字典与scheam注意 agg 聚合操作alias 设置别名字段设置别名设置dataframe别名 cache 缓存checkpoint RDD持久化到外部存储coalesce 设置dataframe分区数量collect 拉取数据columns 获取dataframe列 Pys…

文章目录

  • Pyspark dataframe
    • 创建DataFrame
      • 使用Row对象
      • 使用元组与scheam
      • 使用字典与scheam
      • 注意
    • agg 聚合操作
    • alias 设置别名
      • 字段设置别名
      • 设置dataframe别名
    • cache 缓存
    • checkpoint RDD持久化到外部存储
    • coalesce 设置dataframe分区数量
    • collect 拉取数据
    • columns 获取dataframe列

Pyspark dataframe

创建DataFrame

from pyspark.sql import  SparkSession,Row
from pyspark.sql.types import *def init_spark():spark  = SparkSession.builder.appName('LDSX_TEST_DATAFrame') \.config('hive.metastore.uris', 'thrift://hadoop01:9083') \.config('spark.master', "local[2]") \.enableHiveSupport().getOrCreate()return spark
spark = init_spark()# 设置字段类型
schema = StructType([StructField("name", StringType(), True),StructField("age", StringType(), True),StructField("id", StringType(), True),StructField("gender", StringType(), True),
])

使用Row对象

cs = Row('name','age','id','gender')
row_list = [ cs('ldsx','12','1','男'),cs('test1','20','1','女'),cs('test2','26','1','男'),cs('test3','19','1','女'),cs('test4','51','1','女'),cs('test5','13','1','男')]
data = spark.createDataFrame(row_list)
data.show()+-----+---+---+---+
| name|age| id|gender|
+-----+---+---+---+
| ldsx| 12|  1| 男|
|test1| 20|  1| 女|
|test2| 26|  1| 男|
|test3| 19|  1| 女|
|test4| 51|  1| 女|
|test5| 13|  1| 男|
+-----+---+---+---+
data.printSchema()
root|-- name: string (nullable = true)|-- age: string (nullable = true)|-- id: string (nullable = true)|-- gender: string (nullable = true)

使用元组与scheam

park.createDataFrame([('ldsx1','12','1','男'),('ldsx2','12','1','男')],schema).show()
+-----+---+---+------+
| name|age| id|gender|
+-----+---+---+------+
|ldsx1| 12|  1|    男|
|ldsx2| 12|  1|    男|
+-----+---+---+------+

使用字典与scheam

spark.createDataFrame([{'name':'ldsx','age':'12','id':'1','gender':'女'}]).show()
+---+------+---+----+
|age|gender| id|name|
+---+------+---+----+
| 12|    女|  1|ldsx|
+---+------+---+----+

注意

scheam设置优先级高于row设置,dict设置的key

schema = StructType([StructField("name", StringType(), True),StructField("age", StringType(), True),StructField("id", StringType(), True),StructField("测试", StringType(), True),
])
spark.createDataFrame([{'name':'ldsx','age':'12','id':'1','gender':'女'}],schema).show()
+----+---+---+----+
|name|age| id|测试|
+----+---+---+----+
|ldsx| 12|  1|null|
+----+---+---+----+

agg 聚合操作

在 PySpark 中,agg(aggregate)函数用于对 DataFrame 进行聚合操作。它允许你在一个或多个列上应用一个或多个聚合函数,并返回计算后的结果。可以结合groupby使用。

from pyspark.sql import functions as sf
data.show()
+-----+---+---+------+
| name|age| id|gender|
+-----+---+---+------+
| ldsx| 12|  1|    男|
|test1| 20|  1|    女|
|test2| 26|  1|    男|
|test3| 19|  1|    女|
|test4| 51|  1|    女|
|test5| 13|  1|    男|
+-----+---+---+------+
data.agg({'age':'max'}).show()
+--------+
|max(age)|
+--------+
|      51|
+--------+
data.agg({'age':'max','gender':"max"}).show()
+-----------+--------+
|max(gender)|max(age)|
+-----------+--------+
|         男|      51|
+-----------+--------+data.agg(sf.min(data.age)).show()
+--------+
|min(age)|
+--------+
|      12|
+--------+
data.agg(sf.min(data.age),sf.min(data.name)).show()
+--------+---------+
|min(age)|min(name)|
+--------+---------+
|      12|     ldsx|
+--------+---------+

结合groupby使用

data.groupBy('gender').agg(sf.min('age')).show()+------+--------+
|gender|min(age)|
+------+--------+
|    女|      19|
|    男|      12|
+------+--------+
data.groupBy('gender').agg(sf.min('age'),sf.max('name')).show()
+------+--------+---------+
|gender|min(age)|max(name)|
+------+--------+---------+
|    女|      19|    test4|
|    男|      12|    test5|
+------+--------+---------+

alias 设置别名

字段设置别名

#字段设置别名
data.select(data['name'].alias('rename_name')).show()
+-----------+
|rename_name|
+-----------+
|       ldsx|
|      test1|
|      test2|
|      test3|
|      test4|
|      test5|
+-----------+

设置dataframe别名

d1 = data.alias('ldsx1')
d2 = data2.alias('ldsx2')
d1.show()
+-----+---+---+------+
| name|age| id|gender|
+-----+---+---+------+
| ldsx| 12|  1|    男|
|test1| 20|  1|    女|
|test2| 26|  1|    男|
|test3| 19|  1|    女|
|test4| 51|  1|    女|
|test5| 13|  1|    男|
+-----+---+---+------+
d2.show()
+-----+---+---+------+
| name|age| id|gender|
+-----+---+---+------+
|测试1| 12|  1|    男|
|测试2| 20|  1|    男|
+-----+---+---+------+d3 = d1.join(d2,col('ldsx1.gender')==col('ldsx2.gender'),'inner')
d3.show()
+-----+---+---+------+-----+---+---+------+
| name|age| id|gender| name|age| id|gender|
+-----+---+---+------+-----+---+---+------+
| ldsx| 12|  1|    男|测试1| 12|  1|    男|
| ldsx| 12|  1|    男|测试2| 20|  1|    男|
|test2| 26|  1|    男|测试1| 12|  1|    男|
|test2| 26|  1|    男|测试2| 20|  1|    男|
|test5| 13|  1|    男|测试1| 12|  1|    男|
|test5| 13|  1|    男|测试2| 20|  1|    男|
+-----+---+---+------+-----+---+---+------+d3[['name']].show()
#报错提示
pyspark.errors.exceptions.captured.AnalysisException: [AMBIGUOUS_REFERENCE] Reference `name` is ambiguous, could be: [`ldsx1`.`name`, `ldsx2`.`name`].
# 使用别名前缀获取
d3[['ldsx1.name']].show()
+-----+
| name|
+-----+
| ldsx|
| ldsx|
|test2|
|test2|
|test5|
|test5|
+-----+
>>> d3[['ldsx2.name']].show()
+-----+
| name|
+-----+
|测试1|
|测试2|
|测试1|
|测试2|
|测试1|
|测试2|
+-----+
d3.select('ldsx1.name','ldsx2.name').show()
+-----+-----+
| name| name|
+-----+-----+
| ldsx|测试1|
| ldsx|测试2|
|test2|测试1|
|test2|测试2|
|test5|测试1|
|test5|测试2|
+-----+-----+

cache 缓存

dataframe缓存默认缓存级别MEMORY_AND_DISK_DESER

df.cache()
# 查看逻辑计划和物理计划
df.explain()

checkpoint RDD持久化到外部存储

Checkpoint是一种重量级的使用,也就是RDD的重新计算成本很高的时候,我们采用Checkpoint比较合适,或者数据量很大的时候,采用Checkpoint比较合适。如果数据量小,或者RDD重新计算也是非常快的,直接使用缓存即可。
CheckPoint支持写入HDFS。CheckPoint被认为是安全的

sc = spark.sparkContext
# 设置检查存储目录
sc.setCheckpointDir('hdfs:///ldsx_checkpoint')
d3.count()
# 保存会在hdfs上进行存储
d3.checkpoint()
# 从hdfs读取
d3.count()

在这里插入图片描述

coalesce 设置dataframe分区数量

# 设置dataframe分区数量
d3 = d3.coalesce(3)
# 获取分区数量
d3.rdd.getNumPartitions()

collect 拉取数据

当任务提交到集群的时候collect()操作是用来将所有结点中的数据收集到dirver节点,数据量很大慎用防止dirver炸掉。

d3.collect()
[Row(name='ldsx', age='12', id='1', gender='男', name='测试1', age='12', id='1', gender='男'), Row(name='ldsx', age='12', id='1', gender='男', name='测试2', age='20', id='1', gender='男'), Row(name='test2', age='26', id='1', gender='男', name='测试1', age='12', id='1', gender='男'), Row(name='test2', age='26', id='1', gender='男', name='测试2', age='20', id='1', gender='男'), Row(name='test5', age='13', id='1', gender='男', name='测试1', age='12', id='1', gender='男'), Row(name='test5', age='13', id='1', gender='男', name='测试2', age='20', id='1', gender='男')]

columns 获取dataframe列

>>> d3.columns
['name', 'age', 'id', 'gender', 'name', 'age', 'id', 'gender']d3.withColumn('ldsx1.name_1',col('ldsx1.name')).show()
+-----+---+---+------+-----+---+---+------+------------+
| name|age| id|gender| name|age| id|gender|ldsx1.name_1|
+-----+---+---+------+-----+---+---+------+------------+
| ldsx| 12|  1|    男|测试1| 12|  1|    男|        ldsx|
| ldsx| 12|  1|    男|测试2| 20|  1|    男|        ldsx|
|test2| 26|  1|    男|测试1| 12|  1|    男|       test2|
|test2| 26|  1|    男|测试2| 20|  1|    男|       test2|
|test5| 13|  1|    男|测试1| 12|  1|    男|       test5|
|test5| 13|  1|    男|测试2| 20|  1|    男|       test5|
+-----+---+---+------+-----+---+---+------+------------+# 重命名列名
d3.withColumnRenamed('ldsx1.name_1',col('ldsx1.name')).show()
http://www.yayakq.cn/news/171879/

相关文章:

  • 餐饮网站 设计精美网页布局
  • 室内装饰设计网站商城网站需要多少钱
  • 企业管理网站系统上海华东建设发展设计有限公司网站
  • 网站设计主题选择最新广告公司经营范围
  • 广南网站制作东坡区建设局网站
  • 贵阳网站建设哪里好网站制作费用一览表
  • 专用网站建设网站做百度口碑
  • js做网站跳转做平面计设和网站哪个好
  • 网站建设 中企动力长沙wordpress人力资源模板下载
  • 把自己做的网站放到网上去开发一个软件需要哪些步骤
  • 定制网站费用网站全面详细创建步骤
  • 菲纳斯wordpress免费seo推广公司
  • 上海中学门户网站台州网站建设技术外包
  • 网站首页命名厦门做网站培训
  • 小白如何搭建个人网站哈尔滨网络公司资讯
  • 外贸 网站 源码上海专业seo服务公司
  • 怎么把网站源码上传到空间根目录视频域名注册收费标准
  • 网站建设模板素材网站页面的滑动怎么做
  • 网站推广途径及要点金蝶财务软件
  • 山东省建设教育集团网站首页网站建设下一步工作计划
  • 建设网站 织梦购物网站的建设费用
  • 团风做网站国内广告公司排行
  • 企业网站推广北京做的好的seo公司
  • 企业内部网站开发二手车网站模板建设
  • 导航网站容易做吗国家反诈中心app下载注册
  • 网站搭建功能需求杭州网站改版
  • 石家庄哪有个人建站的京东联盟网站建设电脑版
  • php实现网站tag标签wordpress网页版入口
  • 重庆工厂网站建设百度推广客户端教程
  • 网站空间企业个人佛山房地产网站建设