当前位置: 首页 > news >正文

网站做三层结构wordpress主题包安装

网站做三层结构,wordpress主题包安装,如何做内部网站,wordpress底部修改视频教程文章目录 1、准备用于训练的数据集2、处理数据集3、克隆代码4、运行代码5、将ckpt模型转为bin模型使其可在pytorch中运用 Bert官方仓库:https://github.com/google-research/bert 1、准备用于训练的数据集 此处准备的是BBC news的数据集,下载链接&…

文章目录

  • 1、准备用于训练的数据集
  • 2、处理数据集
  • 3、克隆代码
  • 4、运行代码
  • 5、将ckpt模型转为bin模型使其可在pytorch中运用

Bert官方仓库:https://github.com/google-research/bert

1、准备用于训练的数据集

此处准备的是BBC news的数据集,下载链接:https://www.kaggle.com/datasets/gpreda/bbc-news
原数据集格式(.csv):
在这里插入图片描述

2、处理数据集

训练Bert时需要预处理数据,将数据处理成https://github.com/google-research/bert/blob/master/sample_text.txt中所示格式,如下所示:
在这里插入图片描述
数据预处理代码参考:

import pandas as pd# 读取BBC-news数据集
df = pd.read_csv("../../bbc_news.csv")
# print(df['title'])
l1 = []
l2 = []
cnt = 0
for line in df['title']:l1.append(line)for line in df['description']:l2.append(line)
# cnt=0
f = open("test1.txt", 'w+', encoding='utf8')
for i in range(len(l1)):s = l1[i] + " " + l2[i] + '\n'f.write(s)# cnt+=1# if cnt>10: break
f.close()
# print(l1)

处理完后的BBC news数据集格式如下所示:
在这里插入图片描述

3、克隆代码

使用git克隆仓库代码
http:

git clone https://github.com/google-research/bert.git

或ssh:

git clone git@github.com:google-research/bert.git

4、运行代码

先下载Bert模型:BERT-Base, Uncased
该文件中有以下文件:
在这里插入图片描述
运行代码:
在Teminal中运行:

python create_pretraining_data.py \--input_file=./sample_text.txt(数据集地址) \--output_file=/tmp/tf_examples.tfrecord(处理后数据集保存的位置) \--vocab_file=$BERT_BASE_DIR/vocab.txt(vocab.txt文件位置) \--do_lower_case=True \--max_seq_length=128 \--max_predictions_per_seq=20 \--masked_lm_prob=0.15 \--random_seed=12345 \--dupe_factor=5

训练模型:

python run_pretraining.py \--input_file=/tmp/tf_examples.tfrecord(处理后数据集保存的位置) \--output_dir=/tmp/pretraining_output(训练后模型保存位置) \--do_train=True \--do_eval=True \--bert_config_file=$BERT_BASE_DIR/bert_config.json(bert_config.json文件位置) \--init_checkpoint=$BERT_BASE_DIR/bert_model.ckpt(如果要从头开始的预训练,则去掉这行) \--train_batch_size=32 \--max_seq_length=128 \--max_predictions_per_seq=20 \--num_train_steps=20 \--num_warmup_steps=10 \--learning_rate=2e-5

训练完成后模型输出示例:

***** Eval results *****global_step = 20loss = 0.0979674masked_lm_accuracy = 0.985479masked_lm_loss = 0.0979328next_sentence_accuracy = 1.0next_sentence_loss = 3.45724e-05

要注意应该能够在至少具有 12GB RAM 的 GPU 上运行,不然会报错显存不足。
使用未标注数据训练BERT

5、将ckpt模型转为bin模型使其可在pytorch中运用

上一步训练好后准备好训练出来的model.ckpt-20.index文件和Bert模型中的bert_config.json文件

创建python文件convert_bert_original_tf_checkpoint_to_pytorch.py:

# coding=utf-8
# Copyright 2018 The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Convert BERT checkpoint."""import argparseimport torchfrom transformers import BertConfig, BertForPreTraining, load_tf_weights_in_bert
from transformers.utils import logginglogging.set_verbosity_info()def convert_tf_checkpoint_to_pytorch(tf_checkpoint_path, bert_config_file, pytorch_dump_path):# Initialise PyTorch modelconfig = BertConfig.from_json_file(bert_config_file)print("Building PyTorch model from configuration: {}".format(str(config)))model = BertForPreTraining(config)# Load weights from tf checkpointload_tf_weights_in_bert(model, config, tf_checkpoint_path)# Save pytorch-modelprint("Save PyTorch model to {}".format(pytorch_dump_path))torch.save(model.state_dict(), pytorch_dump_path)if __name__ == "__main__":parser = argparse.ArgumentParser()# Required parametersparser.add_argument("--tf_checkpoint_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path.")parser.add_argument("--bert_config_file",default=None,type=str,required=True,help="The config json file corresponding to the pre-trained BERT model. \n""This specifies the model architecture.",)parser.add_argument("--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model.")args = parser.parse_args()convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.bert_config_file, args.pytorch_dump_path)

在Terminal中运行以下命令:

python convert_bert_original_tf_checkpoint_to_pytorch.py \
--tf_checkpoint_path Models/chinese_L-12_H-768_A-12/bert_model.ckpt.index(.ckpt.index文件位置) \
--bert_config_file Models/chinese_L-12_H-768_A-12/bert_config.json(bert_config.json文件位置)  \
--pytorch_dump_path  Models/chinese_L-12_H-768_A-12/pytorch_model.bin(输出的.bin模型文件位置)

以上命令最好在一行中运行:

python convert_bert_original_tf_checkpoint_to_pytorch.py --tf_checkpoint_path bert_model.ckpt.index --bert_config_file bert_config.json  --pytorch_dump_path  pytorch_model.bin

然后就可以得到bin文件了
在这里插入图片描述

【BERT for Tensorflow】本地ckpt文件的BERT使用

http://www.yayakq.cn/news/717166/

相关文章:

  • 温州免费个人网站制作公司网络科技有限公司网站建设策划书
  • 临海受欢迎营销型网站建设个人网站作品下载
  • 网络销售网站apple开发者中心
  • 外贸网站怎么做才好1元2元店5元店进货渠道大全
  • 东莞微信网站建设品牌金融直播室网站建设
  • 域名解析网站什么意思最轻快的wordpress主题
  • 蒙文门户网站建设怎么创建视频网站
  • 最新站长seo网站外链发布平台网站自己建设
  • 网站介绍怎么写做资金盘 互助盘的网站
  • 求网站2021给个网址杭州网络科技网站建设
  • 花型图案设计网站做电影网站需要多大空间
  • 河北网站建设备案店面设计绘画
  • react网站开发网址搜索引擎入口
  • c 网站开发调试谷德设计网官网首页入口
  • 邳州城乡建设局网站最新国际新闻 大事件
  • 受欢迎的南昌网站建设福田欧曼官方网站
  • 公众号如何做微网站注册会计师报名时间
  • 互联网实用技术与网页制作书籍上海网站推广优化公司
  • 适合学生做的网站类型专业网站推广公司
  • 很多年前的51网站wordpress的文章在哪里
  • 搭建本地网站做色流做蛋糕网站的 实训报告图
  • 什么网站ppt做的最好看wordpress主题自适应手机端
  • 游学旅行网站建设策划书全自动行业管理系统
  • 设计asp网站怎么做网页快捷方式
  • 承德建设厅网站国际阿里巴巴官网首页
  • 户外做爰网站自己做的网站如何兼容ie11
  • 北京做网站的公司有哪些wordpress邀请码
  • 新乡市建设路小学网站深圳小企业网站建设
  • 沈阳模板 网站建设娱乐视频直播网站建设
  • 潍坊美丽乡村建设一般发了哪个网站阿里云网站架构怎么做