当前位置: 首页 > news >正文

民宿网站建设濮阳机械设备企业网站建设

民宿网站建设,濮阳机械设备企业网站建设,杭州排名优化公司电话,建设银行手机app下载QA对话目前是大语言模型的一大应用场景,在QA对话中,由于大语言模型信息的滞后性以及不包含业务知识的特点,我们经常需要外挂知识库来协助大模型解决一些问题。在外挂知识库的过程中,embedding模型的召回效果直接影响到大模型的回答…

QA对话目前是大语言模型的一大应用场景,在QA对话中,由于大语言模型信息的滞后性以及不包含业务知识的特点,我们经常需要外挂知识库来协助大模型解决一些问题。在外挂知识库的过程中,embedding模型的召回效果直接影响到大模型的回答效果,因此,在许多场景下,我们都需要微调我们的embedding模型来提高我们的召回效果。下面,我们就基于llama-index对BAAI/bge-base-zh-v1.5模型进行微调,关于该模型的介绍,可以参考https://huggingface.co/BAAI/bge-base-zh-v1.5。

平台介绍

对embedding模型进行微调的过程中需要使用GPU加速训练,由于家境贫寒,我这里就使用了Google colab提供的免费T4GPU进行微调测试。如果大家没办法使用这个,可以使用国内一些公司的GPU云平台,租便宜的GPU就行,微调这个模型所耗费的GPU资源不多。以下所有训练代码皆是在Jupter-notebook上编写并执行的。

依赖安装

安装一些依赖库,有些依赖需要制定版本,否则存在不兼容的问题。

!pip install langchain==0.0.300 llmx==0.0.15a0 openai==0.28.1 llama_index==0.8.23.post1 pypdf sentence-transformers

训练样本准备

我们当前的使用场景是QA问答场景,因此训练数据的格式最好也是问答的格式。我这里由于没有现成的问答样本(人工整理比较耗时),因此我就摘取了《明朝那些事儿》这个小说里面的部分章节,然后让GPT-3.5针对文章内容进行提问,从而形成问答对。代码如下

import json
import openai
import osfrom llama_index import SimpleDirectoryReader
from llama_index.node_parser import SimpleNodeParser
from llama_index.schema import MetadataMode
from llama_index import (VectorStoreIndex,SimpleDirectoryReader,ServiceContext,Response
)def load_corpus(docs, for_training=False, verbose=False):parser = SimpleNodeParser.from_defaults()if for_training:nodes = parser.get_nodes_from_documents(docs[:5], show_progress=verbose)else:nodes = parser.get_nodes_from_documents(docs[6:], show_progress=verbose)if verbose:print(f'Parsed {len(nodes)} nodes')return nodesSEC_FILE = ['embedding_test.txt'] # embedding_test.txt是我训练样本的文件名,即我摘取了部分小说章节并直接保存为了txt文件。print(f"Loading files {SEC_FILE}")reader = SimpleDirectoryReader(input_files=SEC_FILE)
docs = reader.load_data()
print(f'Loaded {len(docs)} docs')docs_nodes = load_corpus(docs, for_training=True, verbose=True)len(docs_nodes)train_nodes = docs_nodes[:75]  # 人工选择3分之2作为训练集
print(f'Loaded {len(train_nodes)} train docs')
val_nodes = docs_nodes[76:] # 剩下三分之一作为验证集
print(f'Loaded {len(val_nodes)} val docs')

构造训练集和测试集

使用GPT3.5基于小说内容生成对应的问题,最后生成train_dataset.json作为训练集,val_dataset.json作为验证集。

from llama_index.finetuning import (generate_qa_embedding_pairs,EmbeddingQAFinetuneDataset,
)
from llama_index.llms import OpenAIos.environ["OPENAI_API_KEY"] = "sk-************"
openai.api_key = os.environ["OPENAI_API_KEY"]
openai.api_base = "https://************"prompt="""下方是上下文信息。---------------------
{context_str}
---------------------根据提供的上下文信息和没有先验知识的原则,仅基于以下查询生成问题。你是一名教师/教授。你的任务是为即将到来的测验/考试设置{num_questions_per_chunk}个问题。这些问题应在文档中多样化,且仅限于所提供的上下文信息。
"""train_dataset = generate_qa_embedding_pairs(train_nodes, qa_generate_prompt_tmpl=prompt)
val_dataset = generate_qa_embedding_pairs(val_nodes, qa_generate_prompt_tmpl=prompt)train_dataset.save_json("train_dataset.json")
val_dataset.save_json("val_dataset.json")

微调Embedding模型

这里的微调都是使用的默认参数,在实际微调过程中,可根据实际情况进行调整。

from llama_index.finetuning import SentenceTransformersFinetuneEngine
train_dataset = EmbeddingQAFinetuneDataset.from_json("train_dataset.json")
val_dataset = EmbeddingQAFinetuneDataset.from_json("val_dataset.json")
finetune_engine = SentenceTransformersFinetuneEngine(train_dataset,model_id="BAAI/bge-base-zh-v1.5",model_output_path="test_model",val_dataset=val_dataset,
)
finetune_engine.finetune() #由于模型较小,且训练样本较少,微调过程非常快
embed_model = finetune_engine.get_finetuned_model()
embed_model

评估微调后的模型

在评估阶段,我们对比了微调前、后的BAAI/bge-base-zh-v1.5模型以及OPENAI的ada002的Embedding模型的召回效果,代码如下:

from llama_index.embeddings import OpenAIEmbedding
from llama_index import ServiceContext, VectorStoreIndex
from llama_index.schema import TextNode
from tqdm.notebook import tqdm
import pandas as pd
def evaluate(dataset,embed_model,top_k=5,verbose=False,
):corpus = dataset.corpusqueries = dataset.queriesrelevant_docs = dataset.relevant_docsservice_context = ServiceContext.from_defaults(embed_model=embed_model)nodes = [TextNode(id_=id_, text=text) for id_, text in corpus.items()]index = VectorStoreIndex(nodes, service_context=service_context, show_progress=True)retriever = index.as_retriever(similarity_top_k=top_k)eval_results = []for query_id, query in tqdm(queries.items()):retrieved_nodes = retriever.retrieve(query)retrieved_ids = [node.node.node_id for node in retrieved_nodes]expected_id = relevant_docs[query_id][0]is_hit = expected_id in retrieved_ids  # assume 1 relevant doceval_result = {"is_hit": is_hit,"retrieved": retrieved_ids,"expected": expected_id,"query": query_id,}eval_results.append(eval_result)return eval_results

注意,在执行下面的代码前,需要先在当前项目的目录下创建results文件夹,否则会导致程序执行失败。

from sentence_transformers.evaluation import InformationRetrievalEvaluator
from sentence_transformers import SentenceTransformerdef evaluate_st(dataset,model_id,name,
):corpus = dataset.corpusqueries = dataset.queriesrelevant_docs = dataset.relevant_docsevaluator = InformationRetrievalEvaluator(queries, corpus, relevant_docs, name=name)model = SentenceTransformer(model_id)return evaluator(model, output_path="results/")

OPENAI-ada002

ada = OpenAIEmbedding()
ada_val_results = evaluate(val_dataset, ada)
df_ada = pd.DataFrame(ada_val_results)
hit_rate_ada = df_ada['is_hit'].mean()
hit_rate_ada

ada002模型的最终评测结果为0.9285714285714286

原始BAAI/bge-base-zh-v1.5

bge = "local:BAAI/bge-base-zh-v1.5"
bge_val_results = evaluate(val_dataset, bge)
df_bge = pd.DataFrame(bge_val_results)
hit_rate_bge = df_bge['is_hit'].mean()
hit_rate_bge

原始的bge-base-zh-v1.5模型的评测结果为0.7663744588744589

微调后的BAAI/bge-base-zh-v1.5

finetuned = "local:test_model"
val_results_finetuned = evaluate(val_dataset, finetuned)
df_finetuned = pd.DataFrame(val_results_finetuned)
hit_rate_finetuned = df_finetuned['is_hit'].mean()
hit_rate_finetuned

微调后模型的最终评测结果为0.975。即微调后,我们的embedding模型在当前数据集的召回效果由0.766上升到0.975注意,得分并不是越高越好,需考虑是否过拟合,可以在其他数据集上再评测下。

以上,即是一次简单的微调过程。感谢技术的发展和开源大佬们的贡献,使得人工智能的应用门槛越来越低。

参考资料

  1. https://colab.research.google.com/github/wenqiglantz/nvidia-sec-finetuning/blob/main/embedding-finetuning/finetune_embedding_nvidia_sec.ipynb
http://www.yayakq.cn/news/194667/

相关文章:

  • 京东网站 用什么做的网站开发项目介绍
  • 加快公司网站建设建设企业官方网站企业登录
  • 抖音代运营协议合同范本网站seo合同
  • 织梦教育网站模板网站被禁用如何解决
  • 网站建设技术服务的方式是什么哪里可以注册免费域名
  • 财经直播网站建设天津做网站的公司
  • 网站用途茶叶淘宝店网站建设ppt
  • 做淘宝美工图片网站wordpress 330
  • 一个网站添加多个网址怎么做免费网站被收录
  • 网站建设工作室的营销方式创业计划书江门网站建设自助建站
  • 不会写代码如何做网站如何自己搭建一个个人网站
  • 景德镇市建设局网站怎么建手机网站
  • 徐州网页乐陵seo快速排名
  • 网站备案变更接入wordpress水印怎么加
  • 中国建设质量安全协会网站共享经济型网站开发
  • 网站建设用户需求设计师联盟网
  • 做公众号时图片的网站网页设计试题及答案
  • 网站的在线支付怎么做京津冀协同发展的首要任务
  • 盘州电子商务网站建设自适应h5网页模板
  • 小蜜蜂网站建设素材网官网免费
  • 海外推广媒体seo自媒体培训
  • 网站管理助手v3.0网站模板 jsp
  • 做网站开发的需求文档建设网络平台绩效目标申报表
  • 中小企业网站提供了什么中宁网站建设公司
  • 除尘环保设备网站模板html网页制作模板代码
  • 浏阳网站建设公司织梦网站怎么上传
  • 网站建设开发有什么好处如何做中英版网站
  • 织梦做网站视频教程python做博客网站
  • 湖北省住房和建设厅网站聚名网域名怎么过户给公司
  • 大型网站制作设计台州seo排名公司