当前位置: 首页 > news >正文

phpmysql网站设计小学生手工制作

phpmysql网站设计,小学生手工制作,互联网是做什么工作的,现在建网站做推广能赚钱吗Debug 1. 快速运行一次所有的代码 (fast_dev_run) 训练了好长时间但是在训练or 验证的时候崩溃了 使用 fast_dev_run运行5个batch 的 training validation test and predication 查看是否存在错误: train Trainer(fast_dev_runTrue) # True 时为5 train Train…

Debug

1. 快速运行一次所有的代码 (fast_dev_run)

训练了好长时间但是在训练or 验证的时候崩溃了 使用 fast_dev_run运行5个batch 的 training validation test and predication 查看是否存在错误:

train = Trainer(fast_dev_run=True) # True 时为5 
train = Trainer(fast_dev_run=7) # 可以调节为任意int值

2.缩短epoch的长度 (limit_xxx_batch)

有时仅使用training or validation or … 是helpful的 例如在Imagenet等较大的数据集上,比等待complete epoch faster

train = Trainer(limit_train_batch=0.1, limit_val_batch=0.01) # 10% and 1%
train = Trainer(limit_train_batch=10, limit_val_batch=5) # 10 batches and 5 batches

3. 打印输入输出层尺寸(example_input_array)

class LitModel(LightningModule):def __init__(self, *args, **kwargs):self.example_input_array = torch.Tensor(32, 1, 28, 28)

summary table 将会输出包括 input and output 的 dimensions

  | Name  | Type        | Params | Mode  | In sizes  | Out sizes
----------------------------------------------------------------------
0 | net   | Sequential  | 132 K  | train | [10, 256] | [10, 512]
1 | net.0 | Linear      | 131 K  | train | [10, 256] | [10, 512]
2 | net.1 | BatchNorm1d | 1.0 K  | train | [10, 512] | [10, 512]

发现 bottlenecks (profiler)

1. 查看时间(profiler)

trainer = Trainer(profiler="simple") # 测量训练循环中的所有方法# output for simple
FIT Profiler Report-------------------------------------------------------------------------------------------
|  Action                                          |  Mean duration (s) |  Total time (s) |
-------------------------------------------------------------------------------------------
|  [LightningModule]BoringModel.prepare_data       |  10.0001           |  20.00          |
|  run_training_epoch                              |  6.1558            |  6.1558         |
|  run_training_batch                              |  0.0022506         |  0.015754       |
|  [LightningModule]BoringModel.optimizer_step     |  0.0017477         |  0.012234       |
|  [LightningModule]BoringModel.val_dataloader     |  0.00024388        |  0.00024388     |
|  on_train_batch_start                            |  0.00014637        |  0.0010246      |
|  [LightningModule]BoringModel.teardown           |  2.15e-06          |  2.15e-06       |
|  [LightningModule]BoringModel.on_train_start     |  1.644e-06         |  1.644e-06      |
|  [LightningModule]BoringModel.on_train_end       |  1.516e-06         |  1.516e-06      |
|  [LightningModule]BoringModel.on_fit_end         |  1.426e-06         |  1.426e-06      |
|  [LightningModule]BoringModel.setup              |  1.403e-06         |  1.403e-06      |
|  [LightningModule]BoringModel.on_fit_start       |  1.226e-06         |  1.226e-06      |
-------------------------------------------------------------------------------------------trainer = Trainer(profiler="advanced") # 测量每个function的时间
# output for advanced
Profiler ReportProfile stats for: get_train_batch4869394 function calls (4863767 primitive calls) in 18.893 seconds
Ordered by: cumulative time
List reduced from 76 to 10 due to restriction <10>
ncalls  tottime  percall  cumtime  percall filename:lineno(function)
3752/1876    0.011    0.000   18.887    0.010 {built-in method builtins.next}1876     0.008    0.000   18.877    0.010 dataloader.py:344(__next__)1876     0.074    0.000   18.869    0.010 dataloader.py:383(_next_data)1875     0.012    0.000   18.721    0.010 fetch.py:42(fetch)1875     0.084    0.000   18.290    0.010 fetch.py:44(<listcomp>)60000    1.759    0.000   18.206    0.000 mnist.py:80(__getitem__)60000    0.267    0.000   13.022    0.000 transforms.py:68(__call__)60000    0.182    0.000    7.020    0.000 transforms.py:93(__call__)60000    1.651    0.000    6.839    0.000 functional.py:42(to_tensor)60000    0.260    0.000    5.734    0.000 transforms.py:167(__call__)# 如果探查器报告变得太长,您可以将报告流式传输到文件
from lightning.pytorch.profilers import AdvancedProfilerprofiler = AdvancedProfiler(dirpath=".", filename="perf_logs")
trainer = Trainer(profiler=profiler)

highlevel usage:
https://lightning.ai/docs/pytorch/stable/tuning/profiler_intermediate.html

2. 查看accelerator的使用情况 (DeviceStatsMonitor)

检测瓶颈的另一个有用技术是确保您使用加速器 (GPU/TPU/HPU) 的全部容量。

from lightning.pytorch.callbacks import DeviceStatsMonitortrainer = Trainer(callbacks=[DeviceStatsMonitor()])

SOTA find

https://lightning.ai/docs/pytorch/stable/advanced/training_tricks.html

http://www.yayakq.cn/news/281301/

相关文章:

  • 山东省住房和建设厅注册中心网站门户云企业官网建设
  • php网站开发哪个好靖江市建设局网站
  • 网站备案加急cms系统管理
  • 货代到哪个网站开发客户网站建设技能
  • 微信公众号推广营销网站文章优化
  • 房产网站制作模板前端案例的网站
  • php网站模块修改宝安附近做网站公司
  • 公司的网站怎么建设做彩票网站需要什么技术
  • 民治网站建设yihe kjwordpress 评论设计
  • 怎么给自己的网站设置关键词wordpress更换主题方法
  • 成都网站建设哪家技术好动画设计好就业吗
  • 深圳专业建网站公司排行做装修网站多少钱
  • 得力企业网站建设管理咨询公司收费标准报价单
  • 广州城市职业学院门户网站兰州关键词优化排名
  • 个人网站备案 备注个人简历模板可编辑
  • 深圳自适应网站建设报价wordpress怎么保存xml
  • 农产品的网站建设与维护论文响应式外贸网站价格
  • 个人网站源代码htmlwordpress维护插件
  • 怎么让网站让百度收录最好的搜索引擎排名
  • 公司网站上线的通知网站开发寻找潜在客户的途径
  • 百度云网站入口葫芦岛建设网站
  • 网络彩票建立网站建设学校网站前的需求分析报告
  • 网站域名注册要多少钱wordpress 清理 数据库
  • 国外简洁的网站如何进行网络销售
  • 物流网站做代理如何下载别人的网站模板
  • 温州cms模板建站哈尔滨自助模板建站
  • 宁波网站建设在哪里做购物网站支付需要怎么做
  • 企业网站开发报价形式成都注册网站公司
  • 搭建国外网站的步骤有哪些网站可以免费做推广
  • 京美建站官网百度一下图片识别