当前位置: 首页 > news >正文

建设部网站13清单公司 网站 方案

建设部网站13清单,公司 网站 方案,网站上怎么做弹幕效果,做民宿最大的网站导读 环境:OpenEuler、Windows 11、WSL 2、Python 3.12.3 langchain 0.3 背景:前期忙碌的开发阶段结束,需要沉淀自己的应用知识,过一遍LangChain 时间:20250220 说明:技术梳理,针对FewShotP…

导读

环境:OpenEuler、Windows 11、WSL 2、Python 3.12.3 langchain 0.3

背景:前期忙碌的开发阶段结束,需要沉淀自己的应用知识,过一遍LangChain

时间:20250220

说明:技术梳理,针对FewShotPromptTemplate专门来写一篇博客

概念说明

few-shot最初来源于机器学习的概念,还有one-shot、zero-shot概念,概念如下:

机器学习中的概念

Zero-Shot学习

在训练集中没有某个类别的样本,但在测试集中出现了这个类别。我们需要模型在训练过程中,即使没有接触过这个类别的样本,但仍然可以通过对这个类别的描述,对没见过的类别进行分类。

One-Shot学习

可以理解为用一条数据fine-tune模型。例如,在人脸识别场景里,你只提供一张照片,门禁就能认识各个角度的你。属于Few-Shot学习的特例。

Few-Shot学习

在模型训练过程中,如果每个类别只有少量样本(一个或几个),研究人员希望机器学习模型在学习了一定类别的大量数据后,对于新的类别,只需要少量的样本就能快速学习。

LangChain中的概念

zero-shot

仅通过提示词即可实现模型正确回答

one-shot

通过一个示例和提示词模型正确回答

few-shot

通过少量(大于1)示例和提示词模型正确回答

参数说明

examples

Optional[list[dict]] = None
示例格式化到提示词中,应提供examples 或 example_selector。

example_selector

Optional[BaseExampleSelector] = None

ExampleSelector 选择要格式化到提示符中的示例,应提供examples 或 example_selector。

validate_template

bool = False

是否尝试验证模板。

example_prompt

PromptTemplate

PromptTemplate 用于格式化单个示例。"

suffix

str

要放在示例后面的提示模板字符串。

example_separator

str = "\n\n"

用于连接前缀、示例和后缀的字符串分隔符。

prefix

str = ""

要放在示例前面的提示模板字符串。

template_format

Literal["f-string", "jinja2"] = "f-string"

提示模板的格式。选项包括:'f-string', 'jinja2'。

代码实战

 使用少量示例的prompt和大模型实现分类的功能

from langchain_core.prompts import PromptTemplate, FewShotPromptTemplate# 示例
examples = [{"question": "下面两个动物是同一种类吗?\n1:拉布拉多\n2:哈士奇","answer": "是"},{"question": "下面两个动物是同一种类吗?\n1:草鱼\n2:鲸鱼","answer": "不是"}
]# 示例提示
example_prompt = PromptTemplate(template="Question: {question}\n{answer}")# 整合后的提示词的前缀
prefix = "你是一个生物学家,判断用户提问的动物种类回答,就判断为同一种类, 回答'是',反之回答'不是'。\n下面是一些示例:"# 整合后的提示词的前缀
suffix = "Question: {input}"# 通过FewShotPromptTemplate整合提示词
prompt = FewShotPromptTemplate(prefix=prefix,examples=examples,example_prompt=example_prompt,suffix=suffix,# input_variables=["input"] # 可省略
)print(prompt.invoke("下面两种动物是同一种类吗?\n1:波斯猫\n2:英国短毛").to_string())# 输出
你是一个生物学家,判断用户提问的动物种类回答,就判断为同一种类, 回答'是',反之回答'不是'。
下面是一些示例:Question: 下面两个动物是同一种类吗?
1:拉布拉多
2:哈士奇
是Question: 下面两个动物是同一种类吗?
1:草鱼
2:鲸鱼
不是Question: 下面两种动物是同一种类吗?
1:波斯猫
2:英国短毛

 显然,promptvalue将提示词按照规则整合在一起了,并将用户提问放在最后

下面看下配置大模型后运行结果

from langchain_core.prompts import PromptTemplate, FewShotPromptTemplate
from langchain_openai import ChatOpenAI# 示例
examples = [{"question": "下面两个动物是同一种类吗?\n1:拉布拉多\n2:哈士奇","answer": "是"},{"question": "下面两个动物是同一种类吗?\n1:草鱼\n2:鲸鱼","answer": "不是"}
]# 示例提示
example_prompt = PromptTemplate(template="Question: {question}\n{answer}")# 整合后的提示词的前缀
prefix = "你是一个生物学家,判断用户提问的动物种类回答,就判断为同一种类, 回答'是',反之回答'不是'。\n下面是一些示例:"# 整合后的提示词的前缀
suffix = "Question: {input}"# 通过FewShotPromptTemplate整合提示词
prompt = FewShotPromptTemplate(prefix=prefix,examples=examples,example_prompt=example_prompt,suffix=suffix,# input_variables=["input"] # 可省略
)
# 大模型信息
# translate_llm = ChatOpenAI(base_url="https://llm.xxx.xxxx.com/v1/",openai_api_key="sk-xxxxxxxxxx",model_name="qwen2.5-instruct")translate_llm = ChatOpenAI(**llm_info)
translate_llm =  prompt | translate_llminput5 = "下面两种动物是同一种类吗?\n1:波斯猫\n2:英国短毛"response = translate_llm.invoke(input5)
print(response.content)# 输出
是注:虽然波斯猫和英国短毛猫是两种不同的猫品种,但它们同属于家猫(Felis catus),因此可认为是同一种类。

结束

http://www.yayakq.cn/news/262058/

相关文章:

  • 网站后台ftp在哪爱站seo
  • 沙洋网站定制珠海建站网站模板
  • 华盛链条网站建设外包网页
  • 网站中加入企业qq做电商不不得不知道的网站
  • 扬子市建设局网站本科自考报名官网
  • 做网站网站的人是怎么被抓的成都电子网站建设
  • 企业网站托管公司广州免费建站平台
  • 重庆实惠网站建设中国十大营销策划大师
  • 教务系统网站开发方法那个网站教你做毕设的
  • ci框架建设网站分析网站的关键词
  • 南宁网站推广费用品牌型网站建设理论
  • 前程无忧招聘网站标记怎么做域名是不是网址的地址
  • 甘肃电子商务网站建设可以自建网站吗
  • 网站漏洞原理微信朋友圈投放广告怎么收费
  • 郑州企业建站详情如何利用js来做网站表单
  • 网站秒收录秒排名建筑工程网上商城投标
  • 广东最大的线上购物平台上海seo网站策划
  • 网站建设流程效果上海最好的网吧
  • asp漂亮的办公家具公司网站源码蒙古文门户网站建设督导
  • 帮人建网站价格赚钱吗php网站开发 在本地修改 服务器源文件同步
  • 公司网站维护教程天津做网站需要多少钱
  • 苏州外贸公司网站建设流程图好网站建设公司地址
  • wordpress站点切换为中文十大免费自媒体素材网站
  • 自己免费建设网站西安网吧
  • 注册网站费属于什么费用seo综合查询爱站
  • asp网站开发环境搭建自己做soho需要做网站吗
  • 上海模板建站源码建立网站的价格
  • 通用模板做的网站不收录工程公司税率是多少
  • 国外建站vps电商网站开发难点
  • 界首网站优化公司ic手机网站开发平台