当前位置: 首页 > news >正文

邯郸哪儿做网站好asp.net4.5网站开发

邯郸哪儿做网站好,asp.net4.5网站开发,江苏元鼎建设工程有限公司网站,十堰市网站建设前言 生成对抗网络(Generative Adversarial Networks,简称GANs)是一种用于生成新样本的机器学习模型。它由两个主要组件组成:生成器(Generator)和判别器(Discriminator)。生成器尝试…

前言

生成对抗网络(Generative Adversarial Networks,简称GANs)是一种用于生成新样本的机器学习模型。它由两个主要组件组成:生成器(Generator)和判别器(Discriminator)。生成器尝试生成与训练数据相似的新样本,而判别器则试图区分生成器生成的样本和真实训练数据。

下面是一个简单的对抗生成网络的入门例子,用于生成手写数字图像:

实现过程

1、导入必要的库和模块

import numpy as np
import matplotlib.pyplot as plt
from tensorflow.keras.datasets import mnist
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Dense, Flatten, Reshape
from tensorflow.keras.layers import Conv2D, Conv2DTranspose
from tensorflow.keras.optimizers import Adam

2、加载MNIST数据集

(x_train, _), (_, _) = mnist.load_data()
x_train = x_train / 255.0
x_train = np.expand_dims(x_train, axis=3)

3、定义生成器模型

generator = Sequential()
generator.add(Dense(7*7*128, input_shape=(100,), activation='relu'))
generator.add(Reshape((7, 7, 128)))
generator.add(Conv2DTranspose(64, (3, 3), strides=(2, 2), padding='same', activation='relu'))
generator.add(Conv2DTranspose(1, (3, 3), strides=(2, 2), padding='same', activation='sigmoid'))

4、定义判别器模型

discriminator = Sequential()
discriminator.add(Conv2D(64, (3, 3), strides=(2, 2), padding='same', input_shape=(28, 28, 1), activation='relu'))
discriminator.add(Conv2D(128, (3, 3), strides=(2, 2), padding='same', activation='relu'))
discriminator.add(Flatten())
discriminator.add(Dense(1, activation='sigmoid'))

5、编译判别器模型

discriminator.compile(loss='binary_crossentropy', optimizer=Adam(learning_rate=0.0002, beta_1=0.5), metrics=['accuracy'])

6、冻结判别器模型的权重

discriminator.trainable = False

7、定义GAN模型

gan = Sequential()
gan.add(generator)
gan.add(discriminator)

8、编译GAN模型

gan.compile(loss='binary_crossentropy', optimizer=Adam(learning_rate=0.0002, beta_1=0.5))

9、定义训练函数

def train_gan(epochs, batch_size, sample_interval):for epoch in range(epochs):# 生成随机噪声作为输入noise = np.random.normal(0, 1, (batch_size, 100))# 生成假样本generated_images = generator.predict(noise)# 从真实样本中随机选择一批样本real_images = x_train[np.random.randint(0, x_train.shape[0], batch_size)]# 训练判别器discriminator_loss_real = discriminator.train_on_batch(real_images, np.ones((batch_size, 1)))discriminator_loss_fake = discriminator.train_on_batch(generated_images, np.zeros((batch_size, 1)))discriminator_loss = 0.5 * np.add(discriminator_loss_real, discriminator_loss_fake)# 训练生成器noise = np.random.normal(0, 1, (batch_size, 100))generator_loss = gan.train_on_batch(noise, np.ones((batch_size, 1)))# 打印损失if epoch % sample_interval == 0:print(f"Epoch {epoch}/{epochs}, Discriminator Loss: {discriminator_loss[0]}, Generator Loss: {generator_loss}")# 保存生成的图像save_images(epoch)

10、保存生成的图像

def save_images(epoch):rows, cols = 5, 5noise = np.random.normal(0, 1, (rows * cols, 100))generated_images = generator.predict(noise)generated_images = 0.5 * generated_images + 0.5fig, axs = plt.subplots(rows, cols)idx = 0for i in range(rows):for j in range(cols):axs[i, j].imshow(generated_images[idx, :, :, 0], cmap='gray')axs[i, j].axis('off')idx += 1fig.savefig(f"gan_images/mnist_{epoch}.png")plt.close()

11、训练GAN模型

epochs = 10000
batch_size = 128
sample_interval = 1000

完整代码

import numpy as np
import matplotlib.pyplot as plt
from tensorflow.keras.datasets import mnist
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Dense, Flatten, Reshape
from tensorflow.keras.layers import Conv2D, Conv2DTranspose
from tensorflow.keras.optimizers import Adam# 加载MNIST数据集
(x_train, _), (_, _) = mnist.load_data()
x_train = x_train / 255.0
x_train = np.expand_dims(x_train, axis=3)# 定义生成器模型
generator = Sequential()
generator.add(Dense(7*7*128, input_shape=(100,), activation='relu'))
generator.add(Reshape((7, 7, 128)))
generator.add(Conv2DTranspose(64, (3, 3), strides=(2, 2), padding='same', activation='relu'))
generator.add(Conv2DTranspose(1, (3, 3), strides=(2, 2), padding='same', activation='sigmoid'))# 定义判别器模型
discriminator = Sequential()
discriminator.add(Conv2D(64, (3, 3), strides=(2, 2), padding='same', input_shape=(28, 28, 1), activation='relu'))
discriminator.add(Conv2D(128, (3, 3), strides=(2, 2), padding='same', activation='relu'))
discriminator.add(Flatten())
discriminator.add(Dense(1, activation='sigmoid'))# 编译判别器模型
discriminator.compile(loss='binary_crossentropy', optimizer=Adam(learning_rate=0.0002, beta_1=0.5), metrics=['accuracy'])# 冻结判别器模型的权重
discriminator.trainable = False# 定义GAN模型
gan = Sequential()
gan.add(generator)
gan.add(discriminator)# 编译GAN模型
gan.compile(loss='binary_crossentropy', optimizer=Adam(learning_rate=0.0002, beta_1=0.5))# 定义训练函数
def train_gan(epochs, batch_size, sample_interval):for epoch in range(epochs):# 生成随机噪声作为输入noise = np.random.normal(0, 1, (batch_size, 100))# 生成假样本generated_images = generator.predict(noise)# 从真实样本中随机选择一批样本real_images = x_train[np.random.randint(0, x_train.shape[0], batch_size)]# 训练判别器discriminator_loss_real = discriminator.train_on_batch(real_images, np.ones((batch_size, 1)))discriminator_loss_fake = discriminator.train_on_batch(generated_images, np.zeros((batch_size, 1)))discriminator_loss = 0.5 * np.add(discriminator_loss_real, discriminator_loss_fake)# 训练生成器noise = np.random.normal(0, 1, (batch_size, 100))generator_loss = gan.train_on_batch(noise, np.ones((batch_size, 1)))# 打印损失if epoch % sample_interval == 0:print(f"Epoch {epoch}/{epochs}, Discriminator Loss: {discriminator_loss[0]}, Generator Loss: {generator_loss}")# 保存生成的图像save_images(epoch)# 保存生成的图像
def save_images(epoch):rows, cols = 5, 5noise = np.random.normal(0, 1, (rows * cols, 100))generated_images = generator.predict(noise)generated_images = 0.5 * generated_images + 0.5fig, axs = plt.subplots(rows, cols)idx = 0for i in range(rows):for j in range(cols):axs[i, j].imshow(generated_images[idx, :, :, 0], cmap='gray')axs[i, j].axis('off')idx += 1fig.savefig(f"gan_images/mnist_{epoch}.png")plt.close()# 训练GAN模型
epochs = 10000
batch_size = 128
sample_interval = 1000train_gan(epochs, batch_size, sample_interval)

训练结果:

这个例子使用了MNIST数据集,生成手写数字图像。生成器和判别器模型使用了卷积神经网络的结构。在训练过程中,生成器试图生成逼真的手写数字图像,而判别器则试图区分真实图像和生成图像。通过反复迭代训练生成器和判别器,GAN模型能够逐渐生成更逼真的手写数字图像。生成的图像会保存在gan_images文件夹中。

http://www.yayakq.cn/news/299313/

相关文章:

  • 虚拟会员商城网站分销韦博在上面做课件的网站叫什么
  • 个人网站免费制作平台网络营销推广的5种方法
  • 网站网络推广运营公司建网站需要多少钱
  • wordpress直接上传视频网站网站建设是要考虑什么东西
  • 网站策划主题福永网站制作
  • 网站到底是域名需要备案还是空间wordpress早期版本
  • 哪里建设网站不会被封深圳广告标识设计公司
  • 讯响模板网站wordpress的源代码
  • 南宁网站建设是什么浦口区网站建设经验丰富
  • 岑溪网站开发工作室网站前端开发培训西安
  • 为网站优势如何做网商商城的网站
  • app 网站开发公司电话四川住房和城乡建设厅网站咨询电话
  • 新网站百度搜不到企业年金交了有好处吗
  • 网站投稿系统怎么做成都网站推广营销微信
  • 建网站有什么要求西安网站改版
  • 北京商会网站建设专做蔬菜水果的网站
  • 做代练去什么网站安全吗怎么去掉wordpress加载动画
  • 网站做竞价经常会被攻击吗网站推广包括哪些
  • 南京网站制作公司南京乐识专心食品饮料网站建设
  • 淘宝做导航网站好免费金融发布网站模板下载
  • 北京网站搭建服务百度小程序异常怎么办
  • 网站极速备案专门做搜索种子的网站
  • 建设网站技术公司企业网页制作公司青岛
  • 高端建设响应式网站第三方开放平台
  • 网站后台模板 php官方网站建设 找磐石网络一流
  • 汽车设计网站大全wordpress识别手机跳转网站
  • 杭州网站建设网络公司网站设计网络公司
  • 网站制作 常见问题网站用户 分析
  • 佛山网站推广优化福州网页定制
  • 网站建设事项招聘门户