当前位置: 首页 > news >正文

商标查询软件网站seo描述

商标查询软件,网站seo描述,织梦cms安装网站程序,wordpress网站后缀HTML1.LeNet概述 LeNet是Yann LeCun于1988年提出的用于手写体数字识别的网络结构,它是最早发布的卷积神经网络之一,可以说LeNet是深度CNN网络的基石。 当时,LeNet取得了与支持向量机(support vector machines)性能相…

1.LeNet概述       

         LeNet是Yann LeCun于1988年提出的用于手写体数字识别的网络结构,它是最早发布的卷积神经网络之一,可以说LeNet是深度CNN网络的基石。

        当时,LeNet取得了与支持向量机(support vector machines)性能相媲美的成果,成为监督学习的主流方法。 LeNet当时被广泛用于自动取款机(ATM)机中,帮助识别处理支票的数字。

        下面是整个网络的结构图

        LeNet共有8层,其中包括输入层,3个卷积层,2个子采样层(也就是现在的池化层),1个全连接层和1个高斯连接层。

        上图中用C代表卷积层,用S代表采样层,用F代表全连接层。输入size固定在1*32*32,LeNet图片的输入是二值图像。网络的输出为0~9十个数字的RBF度量,可以理解为输入图像属于0~9数字的可能性大小。

2.详解LeNet

下面对图中每一层做详细的介绍:

  • LeNet使用的卷积核大小都为5*5,步长为1,无填充,只是卷积深度不一样(卷积核个数导致生成的特征图的通道数)
  • 激活函数为Sigmoid
  • 下采样层都是使用最大池化实现,池化的核都为2*2,步长为2,无填充

        input输入层,尺寸为1*32*32的二值图

        C1层是一个卷积层。该层使用6个卷积核,生成特征图尺寸为32-5+1=28,输出为6个大小为28*28的特征图。再经过一个Sigmoid激活函数非线性变换。

        S2层是一个下采样层。生成特征图尺寸为28/2=14,得到6个14*14的特征图。

        C3层是一个卷积层,该层使用16个卷积核,生成特征图尺寸为14-5+1=10,输出为16个10*10的特征图。再经过一个Sigmoid激活函数非线性变换。

        S4层是一个下采样层,生成特征图尺寸为10/2=5,得到16个5*5的特征图

        C5层是一个卷积层,卷积核数量增加至120。生成特征图尺寸为5-5+1=1。得到120个1*1的特征图。这里实际上相当于S4全连接了,但仍将其标为卷积层,原因是如果LeNet-5的输入图片尺寸变大,其他保持不变,那该层特征图的维数也会大于1*1,那就不是全连接了。再经过一个Sigmoid激活函数非线性变换。

        F6层是一个全连接层,该层与C5层全连接,输出84张特征图。再经过一个Sigmoid激活函数非线性变换。

        输出层:输出层由欧式径向基函数(高斯)单元组成,每个类别(0~9数字)对应一个径向基函数单元,每个单元有84个输入。也就是说,每个输出RBF单元计算输入向量和该类别标记向量之间的欧式距离,距离越远,PRF输出越大,同时我们也会将与标记向量欧式距离最近的类别作为数字识别的输出结果。当然现在通常使用的Softmax实现

3.使用LeNet实现Mnist数据集分类

1.导入所需库

import torch
import torch.nn as nn
from torchsummary import summary
from torchvision import datasets, transforms
from torch.utils.data import DataLoader
import matplotlib.pyplot as plt
from tqdm import tqdm # 显示训练进度条

2.使用GPU

device = 'cuda' if torch.cuda.is_available() else 'cpu'

3.读取Mnist数据集

# 定义数据转换以进行数据标准化
transform = transforms.Compose([transforms.ToTensor(),  # 将图像转换为 PyTorch 张量
])# 下载并加载 MNIST 训练和测试数据集
train_dataset = datasets.MNIST(root='./dataset', train=True, download=True, transform=transform)
test_dataset = datasets.MNIST(root='./dataset', train=False, download=True, transform=transform)# 创建数据加载器以批量加载数据
batch_size = 256
train_dataloader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True)
test_dataloader = DataLoader(test_dataset, batch_size=batch_size, shuffle=False)

4.搭建LeNet

        需要注意的是torch.nn.CrossEntropyLoss自带了softmax函数,所以最后一层使用全连接即可。

class LeNet(nn.Module):def __init__(self):super(LeNet, self).__init__()# Mnist尺寸为28*28,这里设置填充变成32*32self.conv1 = nn.Conv2d(1, 6, kernel_size=5, padding=2) self.sigmoid = nn.Sigmoid()self.pool = nn.MaxPool2d(kernel_size=2, stride=2)self.conv2 = nn.Conv2d(6, 16, kernel_size=5)self.flatten = nn.Flatten()self.fc1 = nn.Linear(16 * 5 * 5, 120)self.fc2 = nn.Linear(120, 84)self.fc3 = nn.Linear(84, 10)def forward(self, x):x = self.pool(self.sigmoid(self.conv1(x)))x = self.pool(self.sigmoid(self.conv2(x)))x = self.flatten(x)x = self.sigmoid(self.fc1(x))x = self.sigmoid(self.fc2(x))x = self.fc3(x)return x
# 实例化模型
model = LeNet().to(device)
summary(model, (1, 28, 28))

5.训练函数

def train(model, lr, epochs):# 将模型放入GPUmodel = model.to(device)# 使用交叉熵损失函数loss_fn = nn.CrossEntropyLoss().to(device)# SGDoptimizer = torch.optim.SGD(model.parameters(), lr=lr)# 记录训练与验证数据train_losses = []train_accuracies = []# 开始迭代   for epoch in range(epochs):   # 切换训练模式model.train()  # 记录变量train_loss = 0.0correct_train = 0total_train = 0# 读取训练数据并使用 tqdm 显示进度条for i, (inputs, targets) in tqdm(enumerate(train_dataloader), total=len(train_dataloader), desc=f"Epoch {epoch+1}/{epochs}", unit='batch'):# 训练数据移入GPUinputs = inputs.to(device)targets = targets.to(device)# 模型预测outputs = model(inputs)# 计算损失loss = loss_fn(outputs, targets)# 梯度清零optimizer.zero_grad()# 反向传播loss.backward()# 使用优化器优化参数optimizer.step()# 记录损失train_loss += loss.item()# 计算训练正确个数_, predicted = torch.max(outputs, 1)total_train += targets.size(0)correct_train += (predicted == targets).sum().item()# 计算训练正确率并记录train_loss /= len(train_dataloader)train_accuracy = correct_train / total_traintrain_losses.append(train_loss)train_accuracies.append(train_accuracy)# 输出训练信息print(f"Epoch [{epoch + 1}/{epochs}] - Train Loss: {train_loss:.4f}, Train Acc: {train_accuracy:.4f}")# 绘制损失和正确率曲线plt.figure(figsize=(10, 5))plt.subplot(1, 2, 1)plt.plot(range(epochs), train_losses, label='Training Loss')plt.xlabel('Epoch')plt.ylabel('Loss')plt.legend()plt.subplot(1, 2, 2)plt.plot(range(epochs), train_accuracies, label='Accuracy')plt.xlabel('Epoch')plt.ylabel('Accuracy')plt.legend()plt.tight_layout()plt.show()

6.模型训练

model = LeNet()
lr = 0.9 # sigmoid两端容易饱和,gradient比较小,学得比较慢,所以学习率要大一些
epochs = 20
train(model,lr,epochs)

7.模型测试 

def test(model, test_dataloader, device, model_path):# 将模型设置为评估模式model.eval()# 将模型移动到指定设备上model.to(device)# 从给定路径加载模型的状态字典model.load_state_dict(torch.load(model_path))correct_test = 0total_test = 0# 不计算梯度with torch.no_grad():# 遍历测试数据加载器for inputs, targets in test_dataloader:  # 将输入数据和标签移动到指定设备上inputs = inputs.to(device)targets = targets.to(device)# 模型进行推理outputs = model(inputs)# 获取预测结果中的最大值_, predicted = torch.max(outputs, 1)total_test += targets.size(0)# 统计预测正确的数量correct_test += (predicted == targets).sum().item()# 计算并打印测试数据的准确率test_accuracy = correct_test / total_testprint(f"Accuracy on Test: {test_accuracy:.4f}")return test_accuracy
model_path = save_path
test(model, test_dataloader, device, save_path)

http://www.yayakq.cn/news/13918/

相关文章:

  • 做网站编辑好还是美工好自学编程从哪学起
  • 网站建设有什么注意大学生网站建设实践报告
  • ppt做视频模板下载网站wordpress模板剥离
  • 用什么服务器做盗版小说网站吗装修设计公司平台
  • 建设银行贵阳银行下载官方网站哪些公司可以做网站
  • 邯郸住房城乡建设厅网站网上做兼职正规网站
  • 叫别人做网站后怎么更改密码企业如何打造品牌
  • 推荐一个两学一做的网站网站开发软件h开头的
  • 普洱市建设局网站wordpress电脑图片尺寸
  • 建站之星网站模版商城优化稳定网站排名
  • 陵川网站建设做网站公司广州
  • 佳木斯企业网站建设建筑网片报价公式
  • 东阿做网站多少钱网页设计个人简历代码
  • 鹤山网站建设易搜互联wordpress好用的空间
  • 手机网站用什么软件html5技术可以制作网站吗
  • 自己建设网站容易吗玉溪网站建设设计
  • 钦州网站制作江苏建设工程材料网站
  • 公司网站页面设计思路wordpress 短标签
  • 网站开发项目流程wordpress如何秒开
  • 好建网站网站建设公司公司介绍
  • 西宁电子商务网站建设做传销网站违法的吗
  • 做网站带源码软件-dwseo规范培训
  • 体现网站特色app外包公司开发
  • 成华区微信网站建设推广关于门户网站建设报告
  • 网站视觉设计方案wap网站源码
  • 成都网站搜索排名优化哪家好网站建设中页面模板
  • 云速网站建设公司自己怎么样做网站
  • 二手交易网站建设内容策划建网站学什么
  • 建设网站费用入什么科目网站建设注册密码咋弄
  • 福州电商网站建设搜索引擎最新排名