当前位置: 首页 > news >正文

做免费采集电影网站犯法吗水果网站策划方案

做免费采集电影网站犯法吗,水果网站策划方案,移动网站 拉新,济南网站设计价格神经网络调参指南 知识点回顾: 随机种子内参的初始化神经网络调参指南 参数的分类调参的顺序各部分参数的调整心得 随机种子 定义:随机种子就像是餐厅的每日菜单,确保每次运行代码时,模型初始化和数据打乱的随机操作保持一致&…

神经网络调参指南

知识点回顾:

  1. 随机种子
  2. 内参的初始化
  3. 神经网络调参指南
    1. 参数的分类
    2. 调参的顺序
    3. 各部分参数的调整心得
  1. 随机种子

    • 定义:随机种子就像是餐厅的每日菜单,确保每次运行代码时,模型初始化和数据打乱的随机操作保持一致,方便调试和对比结果。

    • 作用:确保实验的可复现性。

  2. 内参的初始化

    • 定义:内参初始化就像是厨师在烹饪前对食材进行预处理,确保食材的新鲜度和质量。在神经网络中,参数初始化方法(如 Xavier 初始化、He 初始化)对模型的训练过程和最终性能有重要影响。

    • 常见方法

      • Xavier 初始化:适用于激活函数为 sigmoid 或 tanh 的网络。

      • He 初始化:适用于激活函数为 ReLU 的网络。

  3. 神经网络调参指南

    • 参数的分类

      • 学习率:控制优化步骤的大小。

      • 批量大小:每次训练使用的样本数量。

      • 优化器:如 SGD、Adam 等。

      • 正则化参数:如 L2 正则化强度、Dropout 概率。

    • 调参的顺序

      1. 学习率:先找到合适的学习率范围。类似于厨师烹饪时的火候控制,火候太大容易烧焦,太小则烹饪时间过长。

      2. 优化器:选择合适的优化器。类似于餐厅的管理策略,不同的管理策略(如 SGD、Adam)会影响餐厅的运营效率和顾客满意度。

      3. 批量大小:根据显存和数据特性调整。类似于餐厅每次接待的顾客数量,接待太多顾客可能影响服务质量,太少则资源利用率低。

      4. 正则化参数:最后调整正则化参数以防止过拟合。类似于餐厅的卫生标准,适当的卫生标准可以防止食物中毒(过拟合),但标准过高会增加运营成本。

    • 各部分参数的调整心得

      • 学习率:学习率过高会导致训练不稳定,过低则训练速度慢。可以使用学习率调度器动态调整。

      • 批量大小:较大的批量大小可以提高训练稳定性,但会增加显存占用。较小的批量大小可以提高泛化能力,但训练过程可能更不稳定。

      • 优化器:Adam 优化器通常表现较好,但 SGD 在某些情况下也能取得很好的效果。

      • 正则化参数:Dropout 概率一般在 0.3 到 0.5 之间,L2 正则化强度一般在 0.0001 到 0.01 之间。

作业:对于day'41的简单cnn,看看是否可以借助调参指南进一步提高精度。

为了提升简单CNN在CIFAR-10数据集上的精度,可以参考以下调参建议。这些操作如同优化餐厅运营,旨在提升出菜质量。

  1. 学习率调整:学习率决定了权重更新的幅度。当前使用固定学习率0.001,可以采用学习率调度器动态调整。例如,当验证损失 plateau 时,降低学习率。这好比根据餐厅运营状况灵活调整营销策略,初始高学习率快速降低损失,后期低学习率精细调整。

    scheduler = optim.lr_scheduler.ReduceLROnPlateau(optimizer, mode='min', patience=3, factor=0.5)
  2. 学习率调整:学习率决定了权重更新的幅度。当前使用固定学习率0.001,可以采用学习率调度器动态调整。例如,当验证损失 plateau 时,降低学习率。这好比根据餐厅运营状况灵活调整营销策略,初始高学习率快速降低损失,后期低学习率精细调整。

    scheduler = optim.lr_scheduler.ReduceLROnPlateau(optimizer, mode='min', patience=3, factor=0.5)
  3. 优化器选择:Adam优化器适合大多数情况,但SGD在某些场景下可能带来更好的泛化性能。可以尝试SGD with momentum。这类似于更换餐厅管理团队,不同优化器有着各自的管理风格。

  4. 批量大小调整:批量大小影响训练稳定性和显存占用。当前批量大小为64,可以尝试128或256。这如同调整餐厅同一时间接待的顾客数量,需根据显存合理选择。

    optimizer = optim.Adam(model.parameters(), lr=0.001, weight_decay=1e-5)
  5. 正则化增强:当前使用Dropout(p=0.5),可以尝试增加L2正则化(weight decay)。这如同为防止食材变质而调整存储条件,有助于防止过拟合。

    train_transform = transforms.Compose([# ...其他转换...transforms.RandomErasing(p=0.1),
    ])
  6. 批量大小调整:批量大小影响训练稳定性和显存占用。当前批量大小为64,可以尝试128或256。这如同调整餐厅同一时间接待的顾客数量,需根据显存合理选择。

    self.bn_fc = nn.BatchNorm1d(512)
    x = self.bn_fc(x)
  7. 正则化增强:当前使用Dropout(p=0.5),可以尝试增加L2正则化(weight decay)。这如同为防止食材变质而调整存储条件,有助于防止过拟合。

@浙大疏锦行

http://www.yayakq.cn/news/647823/

相关文章:

  • 网站建设费用无形资产如何摊销seo顾问收费
  • 北京 好的网站制作南昌搜索引擎优化
  • wordpress网站欣赏有货 那样的网站怎么做
  • 做民宿的网站有哪些wordpress织梦哪个好
  • it培训网站模板王也个人资料
  • asp添加网站管理员跨平台网站制作
  • 正在备案怎么建网站wordpress搬家中文图片
  • 特级a做爰网站腾讯云 安装wordpress
  • 网站建设实训心得体会2000字跳转短链接生成
  • 网站客户流失搜索引擎优化好做吗
  • 东莞免费做网站网站建设大师网络科技有限公司
  • 网站开发语言怎么查网络营销方式可分为无站点网络营销和什么
  • 莒县做网站的电话深圳建设网站企业
  • 可以做设计兼职的网站有哪些网站建设事项
  • 网站公司网站搭建wordpress转小程序
  • 网站怎么解析域名中国建筑人才招聘网官网
  • 做宣传册从哪个网站找素材西安百度搜索排名
  • 中文企业展示网站模板抖音小程序怎么开发自己的小程序
  • 网站建设做网站怎么做古建设计网站
  • 农安县住房和城乡建设厅网站门户网站app有哪些
  • 年轻的儿媳网站建设排名优化技巧
  • 佛山微信网站开发泉州自主建站模板
  • 企业网站模板公司百度权重查询网站
  • 建企业网站公司单页面销售信网站赚钱系统
  • 邢台做网站潍坊快速网站排名
  • 如何快速使用模版做网站把自己做的网站进行app封包
  • 优化网站推广教程整站新余网站建设
  • 建设部办公厅网站wordpress设置网站导航
  • 那种投票网站里面怎么做网站建设总体规划包括哪些方面
  • 现在建设的网站有什么劣势重庆网站制作天