当前位置: 首页 > news >正文

网站服务器空间租用wordpress被挂黑链

网站服务器空间租用,wordpress被挂黑链,网站建设入门解读,asp网站导航怎么做文章目录 前期工作1. 设置GPU(如果使用的是CPU可以忽略这步)我的环境: 2. 导入数据3. 查看数据 二、数据预处理1. 加载数据2. 可视化数据3. 再次检查数据4. 配置数据集5. 归一化 三、构建VGG-19网络1. 官方模型(已打包好&#xff…

文章目录

  • 前期工作
    • 1. 设置GPU(如果使用的是CPU可以忽略这步)
      • 我的环境:
    • 2. 导入数据
    • 3. 查看数据
  • 二、数据预处理
    • 1. 加载数据
    • 2. 可视化数据
    • 3. 再次检查数据
    • 4. 配置数据集
    • 5. 归一化
  • 三、构建VGG-19网络
    • 1. 官方模型(已打包好)
    • 2. 自建模型
    • 3. 网络结构图
  • 四、编译
  • 五、训练模型
  • 六、模型评估
  • 七、保存and加载模型
  • 八、预测

前期工作

1. 设置GPU(如果使用的是CPU可以忽略这步)

我的环境:

  • 语言环境:Python3.6.5
  • 编译器:jupyter notebook
  • 深度学习环境:TensorFlow2.4.1
import tensorflow as tfgpus = tf.config.list_physical_devices("GPU")if gpus:tf.config.experimental.set_memory_growth(gpus[0], True)  #设置GPU显存用量按需使用tf.config.set_visible_devices([gpus[0]],"GPU")

2. 导入数据

import matplotlib.pyplot as plt
# 支持中文
plt.rcParams['font.sans-serif'] = ['SimHei']  # 用来正常显示中文标签
plt.rcParams['axes.unicode_minus'] = False  # 用来正常显示负号import os,PIL# 设置随机种子尽可能使结果可以重现
import numpy as np
np.random.seed(1)# 设置随机种子尽可能使结果可以重现
import tensorflow as tf
tf.random.set_seed(1)from tensorflow import keras
from tensorflow.keras import layers,modelsimport pathlib
data_dir = "weather_photos/"
data_dir = pathlib.Path(data_dir)

3. 查看数据

数据集中一共有白月魁、查尔斯、红蔻、马克、摩根、冉冰等6个人物角色。

文件夹含义数量
baiyuekui白月魁40 张
chaersi查尔斯76 张
hongkou红蔻36 张
make马克38张
mogen摩根30 张
ranbing冉冰60张
image_count = len(list(data_dir.glob('*/*')))print("图片总数为:",image_count)

二、数据预处理

1. 加载数据

使用image_dataset_from_directory方法将磁盘中的数据加载到tf.data.Dataset

batch_size = 32
img_height = 224
img_width = 224
train_ds = tf.keras.preprocessing.image_dataset_from_directory(data_dir,validation_split=0.1,subset="training",seed=123,image_size=(img_height, img_width),batch_size=batch_size)
Found 280 files belonging to 6 classes.
Using 252 files for training.
val_ds = tf.keras.preprocessing.image_dataset_from_directory(data_dir,validation_split=0.1,subset="validation",seed=123,image_size=(img_height, img_width),batch_size=batch_size)
Found 280 files belonging to 6 classes.
Using 28 files for validation.

我们可以通过class_names输出数据集的标签。标签将按字母顺序对应于目录名称。

class_names = train_ds.class_names
print(class_names)
['baiyuekui', 'chaersi', 'hongkou', 'make', 'mogen', 'ranbing']

2. 可视化数据

plt.figure(figsize=(10, 5))  # 图形的宽为10高为5for images, labels in train_ds.take(1):for i in range(8):ax = plt.subplot(2, 4, i + 1)  plt.imshow(images[i].numpy().astype("uint8"))plt.title(class_names[labels[i]])plt.axis("off")

在这里插入图片描述

plt.imshow(images[1].numpy().astype("uint8"))

在这里插入图片描述

3. 再次检查数据

for image_batch, labels_batch in train_ds:print(image_batch.shape)print(labels_batch.shape)break
(16, 224, 224, 3)
(16,)
  • Image_batch是形状的张量(16,180,180,3)。这是一批形状180x180x3的16张图片(最后一维指的是彩色通道RGB)。
  • Label_batch是形状(16,)的张量,这些标签对应16张图片

4. 配置数据集

AUTOTUNE = tf.data.AUTOTUNEtrain_ds = train_ds.cache().shuffle(1000).prefetch(buffer_size=AUTOTUNE)
val_ds = val_ds.cache().prefetch(buffer_size=AUTOTUNE)

5. 归一化

normalization_layer = layers.experimental.preprocessing.Rescaling(1./255)
normalization_train_ds = train_ds.map(lambda x, y: (normalization_layer(x), y))
val_ds = val_ds.map(lambda x, y: (normalization_layer(x), y))
image_batch, labels_batch = next(iter(val_ds))
first_image = image_batch[0]
# 查看归一化后的数据
print(np.min(first_image), np.max(first_image))
0.0 0.9928046

三、构建VGG-19网络

VGG优缺点分析:

  • VGG优点

VGG的结构非常简洁,整个网络都使用了同样大小的卷积核尺寸(3x3)和最大池化尺寸(2x2)

  • VGG缺点

1)训练时间过长,调参难度大。2)需要的存储容量大,不利于部署。例如存储VGG-16权重值文件的大小为500多MB,不利于安装到嵌入式系统中。

1. 官方模型(已打包好)

官网模型调用这块我放到后面几篇文章中,下面主要讲一下VGG-19

# model = keras.applications.VGG19(weights='imagenet')
# model.summary()

2. 自建模型

from tensorflow.keras import layers, models, Input
from tensorflow.keras.models import Model
from tensorflow.keras.layers import Conv2D, MaxPooling2D, Dense, Flatten, Dropoutdef VGG19(nb_classes, input_shape):input_tensor = Input(shape=input_shape)# 1st blockx = Conv2D(64, (3,3), activation='relu', padding='same',name='block1_conv1')(input_tensor)x = Conv2D(64, (3,3), activation='relu', padding='same',name='block1_conv2')(x)x = MaxPooling2D((2,2), strides=(2,2), name = 'block1_pool')(x)# 2nd blockx = Conv2D(128, (3,3), activation='relu', padding='same',name='block2_conv1')(x)x = Conv2D(128, (3,3), activation='relu', padding='same',name='block2_conv2')(x)x = MaxPooling2D((2,2), strides=(2,2), name = 'block2_pool')(x)# 3rd blockx = Conv2D(256, (3,3), activation='relu', padding='same',name='block3_conv1')(x)x = Conv2D(256, (3,3), activation='relu', padding='same',name='block3_conv2')(x)x = Conv2D(256, (3,3), activation='relu', padding='same',name='block3_conv3')(x)x = Conv2D(256, (3,3), activation='relu', padding='same',name='block3_conv4')(x)x = MaxPooling2D((2,2), strides=(2,2), name = 'block3_pool')(x)# 4th blockx = Conv2D(512, (3,3), activation='relu', padding='same',name='block4_conv1')(x)x = Conv2D(512, (3,3), activation='relu', padding='same',name='block4_conv2')(x)x = Conv2D(512, (3,3), activation='relu', padding='same',name='block4_conv3')(x)x = Conv2D(512, (3,3), activation='relu', padding='same',name='block4_conv4')(x)x = MaxPooling2D((2,2), strides=(2,2), name = 'block4_pool')(x)# 5th blockx = Conv2D(512, (3,3), activation='relu', padding='same',name='block5_conv1')(x)x = Conv2D(512, (3,3), activation='relu', padding='same',name='block5_conv2')(x)x = Conv2D(512, (3,3), activation='relu', padding='same',name='block5_conv3')(x)x = Conv2D(512, (3,3), activation='relu', padding='same',name='block5_conv4')(x)x = MaxPooling2D((2,2), strides=(2,2), name = 'block5_pool')(x)# full connectionx = Flatten()(x)x = Dense(4096, activation='relu',  name='fc1')(x)x = Dense(4096, activation='relu', name='fc2')(x)output_tensor = Dense(nb_classes, activation='softmax', name='predictions')(x)model = Model(input_tensor, output_tensor)return modelmodel=VGG19(1000, (img_width, img_height, 3))
model.summary()
Model: "model"
_________________________________________________________________
Layer (type)                 Output Shape              Param #   
=================================================================
input_1 (InputLayer)         [(None, 224, 224, 3)]     0         
_________________________________________________________________
block1_conv1 (Conv2D)        (None, 224, 224, 64)      1792      
_________________________________________________________________
block1_conv2 (Conv2D)        (None, 224, 224, 64)      36928     
_________________________________________________________________
block1_pool (MaxPooling2D)   (None, 112, 112, 64)      0         
_________________________________________________________________
block2_conv1 (Conv2D)        (None, 112, 112, 128)     73856     
_________________________________________________________________
block2_conv2 (Conv2D)        (None, 112, 112, 128)     147584    
_________________________________________________________________
block2_pool (MaxPooling2D)   (None, 56, 56, 128)       0         
_________________________________________________________________
block3_conv1 (Conv2D)        (None, 56, 56, 256)       295168    
_________________________________________________________________
block3_conv2 (Conv2D)        (None, 56, 56, 256)       590080    
_________________________________________________________________
block3_conv3 (Conv2D)        (None, 56, 56, 256)       590080    
_________________________________________________________________
block3_conv4 (Conv2D)        (None, 56, 56, 256)       590080    
_________________________________________________________________
block3_pool (MaxPooling2D)   (None, 28, 28, 256)       0         
_________________________________________________________________
block4_conv1 (Conv2D)        (None, 28, 28, 512)       1180160   
_________________________________________________________________
block4_conv2 (Conv2D)        (None, 28, 28, 512)       2359808   
_________________________________________________________________
block4_conv3 (Conv2D)        (None, 28, 28, 512)       2359808   
_________________________________________________________________
block4_conv4 (Conv2D)        (None, 28, 28, 512)       2359808   
_________________________________________________________________
block4_pool (MaxPooling2D)   (None, 14, 14, 512)       0         
_________________________________________________________________
block5_conv1 (Conv2D)        (None, 14, 14, 512)       2359808   
_________________________________________________________________
block5_conv2 (Conv2D)        (None, 14, 14, 512)       2359808   
_________________________________________________________________
block5_conv3 (Conv2D)        (None, 14, 14, 512)       2359808   
_________________________________________________________________
block5_conv4 (Conv2D)        (None, 14, 14, 512)       2359808   
_________________________________________________________________
block5_pool (MaxPooling2D)   (None, 7, 7, 512)         0         
_________________________________________________________________
flatten (Flatten)            (None, 25088)             0         
_________________________________________________________________
fc1 (Dense)                  (None, 4096)              102764544 
_________________________________________________________________
fc2 (Dense)                  (None, 4096)              16781312  
_________________________________________________________________
predictions (Dense)          (None, 1000)              4097000   
=================================================================
Total params: 143,667,240
Trainable params: 143,667,240
Non-trainable params: 0
_________________________________________________________________

3. 网络结构图

结构说明:

  • 16个卷积层(Convolutional Layer),分别用blockX_convX表示
  • 3个全连接层(Fully connected Layer),分别用fcXpredictions表示
  • 5个池化层(Pool layer),分别用blockX_pool表示

VGG-19包含了19个隐藏层(16个卷积层和3个全连接层),故称为VGG-19

**在这里插入图片描述
**

四、编译

在准备对模型进行训练之前,还需要再对其进行一些设置。以下内容是在模型的编译步骤中添加的:

  • 损失函数(loss):用于衡量模型在训练期间的准确率。
  • 优化器(optimizer):决定模型如何根据其看到的数据和自身的损失函数进行更新。
  • 指标(metrics):用于监控训练和测试步骤。以下示例使用了准确率,即被正确分类的图像的比率。
# 设置优化器
opt = tf.keras.optimizers.Adam(learning_rate=1e-4)model.compile(optimizer=opt,loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True),metrics=['accuracy'])

五、训练模型

epochs = 10history = model.fit(train_ds,validation_data=val_ds,epochs=epochs
)
Epoch 1/10
16/16 [==============================] - 21s 274ms/step - loss: 5.4494 - accuracy: 0.1508 - val_loss: 6.8600 - val_accuracy: 0.0714
Epoch 2/10
16/16 [==============================] - 2s 130ms/step - loss: 1.7976 - accuracy: 0.3174 - val_loss: 6.8402 - val_accuracy: 0.3929
Epoch 3/10
16/16 [==============================] - 2s 139ms/step - loss: 1.4882 - accuracy: 0.4201 - val_loss: 6.8453 - val_accuracy: 0.5357
Epoch 4/10
16/16 [==============================] - 2s 135ms/step - loss: 1.1548 - accuracy: 0.5917 - val_loss: 6.8551 - val_accuracy: 0.3571
Epoch 5/10
16/16 [==============================] - 2s 139ms/step - loss: 1.0376 - accuracy: 0.6267 - val_loss: 6.8421 - val_accuracy: 0.4286
Epoch 6/10
16/16 [==============================] - 2s 136ms/step - loss: 1.0189 - accuracy: 0.5942 - val_loss: 6.8277 - val_accuracy: 0.5714
Epoch 7/10
16/16 [==============================] - 2s 133ms/step - loss: 0.6873 - accuracy: 0.7761 - val_loss: 6.8382 - val_accuracy: 0.6429
Epoch 8/10
16/16 [==============================] - 2s 128ms/step - loss: 0.3739 - accuracy: 0.9019 - val_loss: 6.8109 - val_accuracy: 0.5357
Epoch 9/10
16/16 [==============================] - 2s 128ms/step - loss: 0.3761 - accuracy: 0.8547 - val_loss: 6.8101 - val_accuracy: 0.6429
Epoch 10/10
16/16 [==============================] - 2s 129ms/step - loss: 0.1258 - accuracy: 0.9713 - val_loss: 6.7796 - val_accuracy: 0.8929

六、模型评估

acc = history.history['accuracy']
val_acc = history.history['val_accuracy']loss = history.history['loss']
val_loss = history.history['val_loss']epochs_range = range(epochs)plt.figure(figsize=(12, 4))
plt.subplot(1, 2, 1)
plt.plot(epochs_range, acc, label='Training Accuracy')
plt.plot(epochs_range, val_acc, label='Validation Accuracy')
plt.legend(loc='lower right')
plt.title('Training and Validation Accuracy')plt.subplot(1, 2, 2)
plt.plot(epochs_range, loss, label='Training Loss')
plt.plot(epochs_range, val_loss, label='Validation Loss')
plt.legend(loc='upper right')
plt.title('Training and Validation Loss')
plt.show()

在这里插入图片描述

七、保存and加载模型

# 保存模型
model.save('model/my_model.h5')
# 加载模型
new_model = keras.models.load_model('model/my_model.h5')

八、预测

# 采用加载的模型(new_model)来看预测结果plt.figure(figsize=(10, 5))  # 图形的宽为10高为5for images, labels in val_ds.take(1):for i in range(8):ax = plt.subplot(2, 4, i + 1)  # 显示图片plt.imshow(images[i])# 需要给图片增加一个维度img_array = tf.expand_dims(images[i], 0) # 使用模型预测图片中的人物predictions = new_model.predict(img_array)plt.title(class_names[np.argmax(predictions)])plt.axis("off")

在这里插入图片描述

http://www.yayakq.cn/news/759617/

相关文章:

  • 织梦网站后台模板装修网站建设方案百度文库
  • 中国最好的网站建设公司企业电商网站开发
  • 门户网站要求网站主体负责人能查询到吗
  • 成都网站制作公司 dedecms织梦可以做相亲网站
  • 网站建设详细合同范本厦门学网站设计
  • 网站项目经费预算动易手机网站模板
  • 惠州网站推广排名站长工具高清吗
  • 网站建立平台 cms网站开发 公司
  • 海尔电子商务网站建设福建交通建设网站
  • 视频网站 flash h5全国建设信息网官网
  • 如东做网站公司固戍做网站的公司
  • 大蒜做营销型网站个人网站 费用
  • 网站建设用什么网站好一点运营怎么做
  • 广州互联网公司排名前20厦门做网站优化的公司
  • 网站租用服务器价格重庆网站建设cq600
  • 江门广告网站推广技巧单页网站开发费用
  • 外贸网站建站注意事项及价格app开发定制公司如何选择
  • 网站设计制作哪个好广告投放网
  • 怎么做网店网站WordPress分享无法显示
  • python整合网站开发技术wordpress 显示大图
  • 服务器网站目录手机微网站制作系统
  • 电商网站建设实施方案微信公众号优秀文案
  • 公司想做网站巴中+网站建设
  • 国外 设计 网站做网站需要展示工厂么?
  • 怎么用node做网站苏州市建设厅网站首页
  • 珠海门户网站建设价格wordpress 没有注册
  • 单页面淘宝客网站北京有多少互联网公司
  • 住房和城乡建设部官方网站发布泉州市第一建设有限公司网站
  • 广州网站设计建站编程网站scratch在线使用
  • 通州北苑网站建设wordpress共用数据库