当前位置: 首页 > news >正文

网站建设的好处百度论坛首页官网

网站建设的好处,百度论坛首页官网,微信商城怎么开发,温州vi设计公司基本模型 假设在二维直角坐标系中,可以用相互垂直的基向量和表示: 假设: 假设在上的投影为,那么: 所以: 用公式表达: 但是在实际中,基向量和不一定长度都是1,重新推导一…

基本模型

假设在二维直角坐标系中,\underset{C}{\rightarrow}可以用相互垂直的基向量\underset{A_1}{\rightarrow}\underset{A_2}{\rightarrow}表示:

假设:

\overrightarrow{A_1} = [1, 0]

\overrightarrow{A_2} = [0, 1]

\overrightarrow{C} = [2, 3]

假设\overrightarrow{C}\overrightarrow{A_1}上的投影为T_{\overrightarrow A_1}^{\overrightarrow C},那么:

T_{\overrightarrow A_1}^{\overrightarrow C} = \overrightarrow{C} \cdot \overrightarrow{A_1} = 2*1 + 3*0 = 2

T_{\overrightarrow A_2}^{\overrightarrow C} = \overrightarrow{C} \cdot \overrightarrow{A_2} = 2*0 + 3*1 = 3

所以:

\overrightarrow{C} = 2\overrightarrow{A_1} + 3\overrightarrow{A_2}

用公式表达:

\overrightarrow{C} = k_{1}\overrightarrow{A_1} + k_{2}\overrightarrow{A_2}

k_1 = T_{\overrightarrow A_1}^{\overrightarrow C} = \overrightarrow C \cdot \overrightarrow A_1

k_2 = T_{\overrightarrow A_2}^{\overrightarrow C} = \overrightarrow C \cdot \overrightarrow A_2

但是在实际中,基向量\underset{A_1}{\rightarrow}\underset{A_2}{\rightarrow}不一定长度都是1,重新推导一下:

假设:

\overrightarrow{A_1} = [5, 0]

\overrightarrow{A_2} = [0, 7]

\overrightarrow{C} = [2, 3]

那么:

k_1 = T_{\overrightarrow A_1}^{\overrightarrow C} = \frac { | \overrightarrow C | cos\theta } {| \overrightarrow A_1 |}

两边乘以| \overrightarrow A_1 |

k_1 = \frac { | \overrightarrow A_1 | | \overrightarrow C | cos\theta } {| \overrightarrow A_1 | ^2}

分子部分其实就是求\overrightarrow{C}\overrightarrow{A_1}上的投影与| \overrightarrow{A_1} |的乘积,所以:

k_1 = \frac { \overrightarrow A_1 \cdot \overrightarrow C } {| \overrightarrow A_1 | ^2}

带入数据:

k_1 = \frac {[5,0] \cdot [2, 3]}{\sqrt{5^2+0^0}^2} = \frac{5*2+0*3}{25} = \frac{2}{5}
大功告成。

结论:

\overrightarrow{C} = k_{1}\overrightarrow{A_1} + k_{2}\overrightarrow{A_2}

k_1 = T_{\overrightarrow A_1}^{\overrightarrow C} = \frac {\overrightarrow C \overrightarrow A_1}{|\overrightarrow A_1|^2}

k_2 = T_{\overrightarrow A_2}^{\overrightarrow C} = \frac {\overrightarrow C \overrightarrow A_2}{|\overrightarrow A_2|^2}

从二维到无限维

二维模型如下:

向量维度1的投影维度2的投影
\overrightarrow{C}23
\overrightarrow{A_1}10
\overrightarrow{A_2}01

扩展到三维:

向量维度1的投影维度2的投影维度3的投影
\overrightarrow{C}c1c2c3
\overrightarrow{A_1}100
\overrightarrow{A_2}010
\overrightarrow{A_3}001

可以看到,\overrightarrow{C}有多少个维度就要有多少个基向量,每个基向量的维度和\overrightarrow{C}相等。

扩展到无限维:

向量维度1的投影维度2的投影维度3的投影维度n的投影
\overrightarrow{C}c1c2c3cn
\overrightarrow{A_1}1000
\overrightarrow{A_2}0100
\overrightarrow{A_3}0010
\overrightarrow{A_n}0001

把函数当成无限维向量

把函数的t当成无限维,它的值分布在各自的维度上:

函数t_0t_1t_2t_n
f(t)f(t_0)f(t_1)f(t_2)f(t_n)
f_1(t)f_1(t_0)f_1(t_1)f_1(t_2)f_1(t_n)
f_2(t)f_2(t_0)f_2(t_1)f_2(t_2)f_2(t_n)
f_3(t)f_3(t_0)f_3(t_1)f_3(t_2)f_3(t_n)
f_n(t)f_n(t_0)f_n(t_1)f_n(t_2)f_n(t_n)

于是:

f(t) = k_1f_1(t) + k_2f_2(t) + ... + k_nf_n(t)

f(t) = \sum_{i=0}^{n} k_{i}f_i(t)

这里有个容易让人困惑的点:

前面的各个基向量都是这样的:

向量维度1的投影维度2的投影维度3的投影维度n的投影
\overrightarrow{A_1}1000
\overrightarrow{A_2}0100
\overrightarrow{A_3}0010
\overrightarrow{A_n}0001

每个向量只在自己的维度有值,在别的维度为0。

那现在的函数在别的维度上等于0吗?

不一定,但是没错。

首先各个维度的基向量是正交(垂直)的,比如:

T_{\overrightarrow{A_3}}^{\overrightarrow{A_1}} = \frac { \overrightarrow{A_1} \cdot \overrightarrow{A_3}} {|\overrightarrow{A_3}|^2} = \frac { [1,0,0] \cdot [0,0,1] }{\sqrt{0^2+0^2+3^2}^2} = 0

这里的函数其实也是正交的:

T_{f_3(t)}^{f_1(t)} = \frac { f_1(t) \cdot f_3(t) }{f_3(t) \cdot f_3(t)} = \frac { \sum_{0}^{t_n} f_1(t)f_3(t) } { \sum_{0}^{t_n} f_3(t)f_3(t) }

两边乘以dt

T_{f_3(t)}^{f_1(t)} = \frac { \frac { \int_{0}^{t_n} f_1(t)f_3(t) dt } {dt} } { \frac { \int_{0}^{t_n} f_3(t)f_3(t) dt } {dt} } = \frac {\int_{0}^{t_n} f_1(t)f_3(t) dt}{\int_{0}^{t_n} f_3(t)f_3(t) dt}

在傅里叶变换中:

各个基函数=sin(nw_0t)+cos(nw_0t) 

其中w_0是步长的意思,任你选取,n=1,2,...

总的意思就是f(t)可以表示成很多正交的、不同频率(一个频率就是一个维度)的三角函数之和。

可以证明:

sin(nw_0t)sin(kw_0t)正交,sin(nw_0t)cos(kw_0t)正交。

于是:

f_1(t) = sin(w_0t)

f_3(t) = sin(3w_0t)

T_{f_3(t)}^{f_1(t)} = \frac {\int_{0}^{t_n} f_1(t)f_3(t) dt}{\int_{0}^{t_n} f_3(t)f_3(t) dt} = 0

好了,f_i(t)已知了,k_i怎么求?

由前面的公式:

k_1 = T_{\overrightarrow A_1}^{\overrightarrow C} = \frac {\overrightarrow C \overrightarrow A_1}{|\overrightarrow A_1|^2}

可以推导出:

k_1 = T_{f_1(t)}^{f(t)} = \frac {f(t) \cdot f_1(t) }{f_1(t) \cdot f_1(t)} = \frac { \sum_{t=0}^{t_n}f(t) \cdot f_1(t) }{ \sum_{t=0}^{t_n} f_1(t) \cdot f_1(t)}

套用之前两边乘以dt的方法:

k_1 = \frac { \frac { \int_{0}^{t_n}f(t) f_1(t)dt}{dt} }{\frac { \int_{0}^{t_n}f_1(t) f_1(t)dt}{dt}}

k_1 = \frac { \int_{0}^{t_n}f(t) f_1(t)dt} { \int_{0}^{t_n}f_1(t) f_1(t)dt}

带入f_1(t) = sin(nw_0t)n = 1

k_1 = \frac { \int_{0}^{t_n}f(t) sin(nw_0t)dt} { \int_{0}^{t_n}sin(nw_0t) sin(nw_0t)dt}

k_1 = \frac { \int_{0}^{t_n}f(t) sin(nw_0t)dt} {t_n/2}

k_1 = \frac{2}{t_n} \int_{0}^{t_n}f(t) sin(nw_0t)dt

这便是傅里叶级数了。

其它

各个基函数必须是两两正交的,不然所有推导都是错的。

好多资料说两个函数的正交等于它们的内积:

f_1(t) \cdot f_3(t) = \int_{t=0}^{T} f_1(t)f_3(t) dt

但是由向量的点积推出来应该是这样才对:

f_1(t) \cdot f_3(t) = \frac { \int_{t=0}^{T} f_1(t)f_3(t) dt } {dt}

可这样也是不对的,不存在这种操作。在我的推导中用了这个等式,但是我分子分母约掉dt了,所以避开了。

http://www.yayakq.cn/news/48918/

相关文章:

  • 最新域名网站百度用户服务中心在线申诉
  • 专业网站托管的公司凡科网站代码如何修改
  • 如何用国外网站做头条广州网络营销首荐佐兰网络vip
  • 建设网站 注册与登陆wordpress小工具没有
  • 长沙企业网站排名优化新媒体营销的概念是什么
  • 做网站主色调选择怎么自学做网站
  • 龙岗附近做网站公司哪家好温州做网站制作
  • 注册网站入口网站开发项目设计文档
  • 做适合漫画网站的图片广州市移动网站建设服务公司
  • 网站报价清单做华为网站的还有哪些功能
  • 如何做一个网页优化设计五年级下册数学答案
  • 在线网站开发枣庄三合一网站建设公司
  • 怎么用php自己做网站设计公司平面设计
  • 男通网站哪个好用网站做信用认证有必要吗
  • 阿里云 建网站攻略自己做网站服务器要多少钱
  • 申请网站备案要多久wordpress定时发布的文章失效
  • 西柏坡门户网站建设规划书制作书签教案
  • 杭州百度做网站多少钱软件商店安装app
  • 新手学做网站要花钱么个人设计网站
  • 长治做网站的公司别人用我的身份信息建设网站
  • 国外网站做盗版品牌推广营销方案
  • 网站开发页面百度快照怎么看
  • 济南网站建设设计制作公司捕鱼游戏网站建设步骤
  • 广州做响应式网站合肥市建设网
  • 濮阳的网站建设苏州网站制作
  • 网站功能介绍是什么怎样做网站收录
  • 确定网站设计公司简报济南微网站
  • 做淘宝有哪些推广网站本溪建网站
  • 苏州建设局官方网站ps网页版在线制作
  • 外贸网站建设推广优化做ui设计的软件