当前位置: 首页 > news >正文

wordpress加上vip解析中山网站优化

wordpress加上vip解析,中山网站优化,建设网站的过程,网站建设尺寸大小文章目录 前言Z-Score标准化Z-Score应用示例 Min-Max归一化Min-Max应用示例 总结 前言 第五天是我们的numpy学习计划中的最后一天。 在数据处理和数据分析中,数据预处理是非常重要的一步。我们不可能完全靠肉眼来分析数据,总会有用到各种算法模型的时候…

文章目录

    • 前言
    • Z-Score标准化
      • Z-Score应用示例
    • Min-Max归一化
      • Min-Max应用示例
    • 总结

前言

第五天是我们的numpy学习计划中的最后一天。

在数据处理和数据分析中,数据预处理是非常重要的一步。我们不可能完全靠肉眼来分析数据,总会有用到各种算法模型的时候,例如使用聚类、回归分析。

如果原来的数据非常“肮脏”,不规整,我们将会得到一个不可靠的糟糕结果,此时我们需要用两种十分常用的数据预处理手段来清洗我们的数据。

今天仅仅包括如下两个内容:

  • Z-Score标准化
  • Min-Max归一化

Z-Score标准化

Z-Score标准化是一种常见的数据标准化方法,它通过对原始数据进行均值和标准差的线性变换,将数据变换为均值为0、标准差为1的分布。

Z-Score标准化后的数据,通常在机器学习模型上表现更好,并且,我们可以根据Z-Score标准化后的数据来去除异常值。

具体的标准化公式如下:

X standardized = X − X ˉ σ X_{\text{standardized}} = \frac{{X - \bar{X}}}{{\sigma}} Xstandardized=σXXˉ

其中, X s t a n d a r d i z e d X_{standardized} Xstandardized表示标准化后的数据, X X X表示原始数据, X m e a n X_{mean} Xmean表示原始数据的均值, X s t d X_{std} Xstd表示原始数据的标准差。

关于Z分数(Z-Score)
其实Z-Score标准化,就是数据计算成对应的Z分数,我们可以利用Z分数进行异常值处理,如果Z分数大于某一个阈值(通常 ± 2),则认为它是异常值,进行丢弃。

使用Z分数处理异常值需要满足正态分布的假设。Z分数越大,就代表它越接近正态分布的右侧,Z分数越小,就代表它越接近正态分布的左侧,对于那些及其右侧或者及其左侧的数据,因为很可能是错误的数据,所以视为异常值。
Z = X − X ˉ σ Z = \frac{{X - \bar{X}}}{{\sigma}} Z=σXXˉ

下面是使用Numpy实现Z-Score标准化的代码示例:

import numpy as npdef z_score(X):X_mean = np.mean(X)X_std = np.std(X)X_standardized = (X - X_mean) / X_stdreturn X_standardized

Z-Score应用示例

在运行过上面的Z-Score标准化的实现代码后,我们可以运行下面的代码。

假设我们现在有一批大学生的身高数据:

  • 我们知道,正常成年人的身高一般都是在[150, 190]之间
  • 而我们在下面的数据中添加了一个身高为300的异常数据

让我们来看看它的Z分数是多少,并找出300这个异常身高。


# 身高数据
arr = np.array([160, 170, 180, 165, 155, 163, 183, 188, 300])# 计算arr中的元素的z分数
std_data = z_score(arr)# np.abs()可以计算绝对值
abs_zc = np.abs(std_data)print('原数据:')
print(arr)
print()print('Z分数的绝对值:')
print(abs_zc)
print()# 大于号“>”也是一个运算符,运算结果是True和False
compare = abs_zc > 2
print('比较结果:')
print(compare)
print()# compare和arr的形状相同,区别是arr里面的是真正的数据,compare对应每个元素的比较结果
# 只有对应在compare里面为True的元素会被筛选出来
outlier = arr[compare]print('异常值:')
print(outlier)

输出结果
从下面的输出结果中,我们可以看到,正常的身高的Z分数的绝对值都位于[0, 1]之间,而身高为300的那个异常数据的Z分数为2.73893945,显然,这已经远远大于了2这个阈值(这个阈值的设定并没有严格限定,我只能告诉你,阈值的绝对值越高,去除的数据越少,反之越多,这对应了正态分布的左右两端都只有少量数据的特点,通过设定Z分数的阈值,我们只保留正态分布中间的那些常见数据),我们应该将它视为异常值去除。

原数据:
[160 170 180 165 155 163 183 188 300]Z分数的绝对值:
[0.59220312 0.35426437 0.11632561 0.47323375 0.7111725  0.52082150.04494399 0.07402539 2.73893945]比较结果:
[False False False False False False False False  True]异常值:
[300]

Min-Max归一化

Min-Max归一化是一种线性变换方法,将数据缩放到指定的范围内。它通过对原始数据进行线性变换,将数据映射到[0, 1]的范围内。

有时候原始数据的尺度相差太大,不满足我们的算法模型的假设(假设不同数据的尺度都是一致的),可能会让我们得到了错误的结果,此时我们就应该使用Min-Max归一化,将数据归一化到[0, 1]之间。

具体的归一化公式如下:

X normalized = X − X min X max − X min X_{\text{normalized}} = \frac{{X - X_{\text{min}}}}{{X_{\text{max}} - X_{\text{min}}}} Xnormalized=XmaxXminXXmin

其中, X n o r m a l i z e d X_{normalized} Xnormalized表示归一化后的数据, X X X表示原始数据, X m i n X_{min} Xmin表示原始数据的最小值, X m a x X_{max} Xmax表示原始数据的最大值。

下面是使用Numpy实现Min-Max归一化的代码示例:

import numpy as npdef min_max(X):X_min = np.min(X)X_max = np.max(X)X_normalized = (X - X_min) / (X_max - X_min)return X_normalized

关于Min-Max其它小内容
其实不一定是归一化到[0, 1]这个区间中,有些特殊情况会需要归一化到[-1, 1]或者别的区间,但是大部分时候都是[0, 1]区间。

Min-Max应用示例

在运行过上面的Min-Max归一化的实现代码后,我们可以运行下面的代码。

假设我们现在有两批医学数据:

  • 大尺度的是患者平均的每日步数
  • 小尺度的是患者的体脂百分比。

这两批数据的尺度非常巨大,如果算法模型更偏向大数值的数据,那么毫无疑问会偏向患者的平均每日步数这一边,这并不是我们想要的结果,因此我们需要进行Min-Max归一化

具体看下面的代码:

# 创建两列尺度差距很大的数据
col1 = np.array([55000, 45000, 35000, 25000, 15000])  # 较大数值的数据列
col2 = np.array([15, 25, 35, 45, 55])                      # 较小数值的数据列# 分别应用Min-Max规约
normalized_col1 = min_max(col1)
normalized_col2 = min_max(col2)# 输出原始数据和归一化后的数据
print("原始数据 - 较大数值的列:")
print(col1)
# \n 代表换行符,仅仅写print()的时候,输出的就是\n这个换行符
print("\n归一化后 - 较大数值的列:")
print(normalized_col1)print("\n原始数据 - 较小数值的列:")
print(col2)
print("\n归一化后 - 较小数值的列:")
print(normalized_col2)

总结

本文介绍了使用Numpy实现Min-Max归一化和Z-Score标准化算法的方法。归一化和标准化是数据预处理中常用的技术,能够有效地提高数据的可处理性和模型的性能。在实际应用中,根据具体的数据情况选择合适的预处理方法是非常重要的。希望本文能对读者在使用Numpy进行数据预处理时有所帮助。

http://www.yayakq.cn/news/16096/

相关文章:

  • 最专业的网站设计公司有哪些制作企业网站的秘诀
  • 哪个品牌网站设计感强什么是电子商务采购
  • 福鼎建设局网站首页eclipse模仿网站开发源代码
  • 广州小型网站建设公司可信网站认证 技术支持单位
  • 网站是如何设计配置方案的手机网站大全观看
  • 佛山网站建设的大品牌永久免费安全的软件下载
  • 网站页面好了怎么做后端网站地图是怎么做的
  • 手机网站支持微信支付吗微信软文范例100字
  • 公司支付网站建设费进什么费用辽宁建设工程信息网官网为什么打不开
  • 模版 网站需要多少钱服装设计图
  • ftp免费网站空间网站怎么挂广告
  • 网站收录提交入口wordpress 文章页面模板
  • 学校门户网站建设管理办法搜索引擎营销seo
  • 营销型网站建设公司排名用dw做网站 主题是哪个
  • 沈阳网站怎么推广洛阳最新消息
  • 西方设计网站外贸自己做网站好不好
  • 建设网站教程视频下载做新网站不换域名
  • 企业网站建设对企业客户的意义企业网站建设销售话术
  • 淘宝客网站 备案百度官网网站登录
  • 湛江外包做网站公司网站营销
  • 做综合类网站好不好vs2010做网站
  • cgi做的网站鞍山百度网站怎么制作
  • 网站建设框架都有哪些常州城投建设招标网站
  • 哈尔滨个人建站模板永康物流网站
  • 校园网站制作最佳磁力吧cili8
  • 可以做外贸的网站有哪些手机排行榜2021前十名最新
  • 免费的素材网站有哪些如何在百度上建免费网站
  • 怎样模仿别人的网站参考消息官方网站
  • 万网网站编辑食品包装设计特点
  • 肇庆做网站建设dw网页制作考试题目