当前位置: 首页 > news >正文

静态企业网站下载徐州市建设工程招标网

静态企业网站下载,徐州市建设工程招标网,无水印效果图网站,网站制作设计报价Torch安装的方法 学习方法 1.边用边学,torch只是一个工具,真正用,查的过程才是学习的过程2.直接就上案例就行,先来跑,遇到什么来解决什么 Mnist分类任务: 网络基本构建与训练方法,常用函数解析…

Torch安装的方法

在这里插入图片描述

学习方法

  • 1.边用边学,torch只是一个工具,真正用,查的过程才是学习的过程
  • 2.直接就上案例就行,先来跑,遇到什么来解决什么

Mnist分类任务:

  • 网络基本构建与训练方法,常用函数解析

  • torch.nn.functional模块

  • nn.Module模块

读取Mnist数据集

  • 会自动进行下载
# 查看自己的torch的版本
import torch
print(torch.__version__)
%matplotlib inline
# 前两步,不用管是在网上下载数据,后续的我们都是在本地的数据进行操作
from pathlib import Path
import requestsDATA_PATH = Path("data")
PATH = DATA_PATH / "mnist"PATH.mkdir(parents=True, exist_ok=True)URL = "http://deeplearning.net/data/mnist/"
FILENAME = "mnist.pkl.gz"if not (PATH / FILENAME).exists():content = requests.get(URL + FILENAME).content(PATH / FILENAME).open("wb").write(content)
import pickle
import gzipwith gzip.open((PATH / FILENAME).as_posix(), "rb") as f:((x_train, y_train), (x_valid, y_valid), _) = pickle.load(f, encoding="latin-1")

784是mnist数据集每个样本的像素点个数

from matplotlib import pyplot
import numpy as nppyplot.imshow(x_train[0].reshape((28, 28)), cmap="gray")
print(x_train.shape)

在这里插入图片描述
全连接神经网络的结构
在这里插入图片描述在这里插入图片描述注意数据需转换成tensor才能参与后续建模训练

import torchx_train, y_train, x_valid, y_valid = map(torch.tensor, (x_train, y_train, x_valid, y_valid)
)
n, c = x_train.shape
x_train, x_train.shape, y_train.min(), y_train.max()
print(x_train, y_train)
print(x_train.shape)
print(y_train.min(), y_train.max())

torch.nn.functional 很多层和函数在这里都会见到

torch.nn.functional中有很多功能,后续会常用的。那什么时候使用nn.Module,什么时候使用nn.functional呢?一般情况下,如果模型有可学习的参数,最好用nn.Module,其他情况nn.functional相对更简单一些

import torch.nn.functional as Floss_func = F.cross_entropydef model(xb):return xb.mm(weights) + bias
bs = 64
xb = x_train[0:bs]  # a mini-batch from x
yb = y_train[0:bs]
weights = torch.randn([784, 10], dtype = torch.float,  requires_grad = True) 
bs = 64
bias = torch.zeros(10, requires_grad=True)print(loss_func(model(xb), yb))

创建一个model来更简化代码

  • 必须继承nn.Module且在其构造函数中需调用nn.Module的构造函数
  • 无需写反向传播函数,nn.Module能够利用autograd自动实现反向传播
  • Module中的可学习参数可以通过named_parameters()或者parameters()返回迭代器
from torch import nnclass Mnist_NN(nn.Module):# 构造函数def __init__(self):super().__init__()self.hidden1 = nn.Linear(784, 128)self.hidden2 = nn.Linear(128, 256)self.out  = nn.Linear(256, 10)self.dropout = nn.Dropout(0.5)#前向传播自己定义,反向传播是自动进行的def forward(self, x):x = F.relu(self.hidden1(x))x = self.dropout(x)x = F.relu(self.hidden2(x))x = self.dropout(x)#x = F.relu(self.hidden3(x))x = self.out(x)return x

在这里插入图片描述

net = Mnist_NN()
print(net)

在这里插入图片描述
可以打印我们定义好名字里的权重和偏置项

for name,parameter in net.named_parameters():print(name, parameter,parameter.size())

在这里插入图片描述

使用TensorDataset和DataLoader来简化

from torch.utils.data import TensorDataset
from torch.utils.data import DataLoadertrain_ds = TensorDataset(x_train, y_train)
train_dl = DataLoader(train_ds, batch_size=bs, shuffle=True)valid_ds = TensorDataset(x_valid, y_valid)
valid_dl = DataLoader(valid_ds, batch_size=bs * 2)
def get_data(train_ds, valid_ds, bs):return (DataLoader(train_ds, batch_size=bs, shuffle=True),DataLoader(valid_ds, batch_size=bs * 2),)
  • 一般在训练模型时加上model.train(),这样会正常使用Batch Normalization和 Dropout
  • 测试的时候一般选择model.eval(),这样就不会使用Batch Normalization和 Dropout
import numpy as npdef fit(steps, model, loss_func, opt, train_dl, valid_dl):for step in range(steps):model.train()  # 训练的时候需要更新权重参数for xb, yb in train_dl:loss_batch(model, loss_func, xb, yb, opt)model.eval() # 验证的时候不需要更新权重参数with torch.no_grad():losses, nums = zip(*[loss_batch(model, loss_func, xb, yb) for xb, yb in valid_dl])val_loss = np.sum(np.multiply(losses, nums)) / np.sum(nums)print('当前step:'+str(step), '验证集损失:'+str(val_loss))

zip的用法

a = [1,2,3]
b = [4,5,6]
zipped = zip(a,b)
print(list(zipped))
a2,b2 = zip(*zip(a,b))
print(a2)
print(b2)
from torch import optim
def get_model():model = Mnist_NN()return model, optim.SGD(model.parameters(), lr=0.001)
def loss_batch(model, loss_func, xb, yb, opt=None):loss = loss_func(model(xb), yb)if opt is not None:loss.backward()opt.step()opt.zero_grad()return loss.item(), len(xb)

三行搞定!

train_dl,valid_dl = get_data(train_ds, valid_ds, bs)
model, opt = get_model()
fit(100, model, loss_func, opt, train_dl, valid_dl)

在这里插入图片描述

correct = 0
total = 0
for xb,yb in valid_dl:outputs = model(xb)_,predicted = torch.max(outputs.data,1)total += yb.size(0)correct += (predicted == yb).sum().item()
print(f"Accuracy of the network the 10000 test imgaes {100*correct/total}")

![在这里插入图片描述](https://img-blog.csdnimg.cn/89e5e749b680426c9700aac9f93bf76a.png

后期有兴趣的小伙伴们可以比较SGD和Adam两种优化器,哪个效果更好一点

-SGD 20epoch 85%
-Adam 20epoch 85%

http://www.yayakq.cn/news/98417/

相关文章:

  • 网站会员系统模板网页设计网页制作
  • 帮人做钓鱼网站做短视频网站需要审批
  • 买CAD设计图做的网站永久免费企业建站官网大全
  • php整站开发 企业网站教程wordpress方小程序主题
  • 1_ 掌握网站开发的基本流程 要求:熟悉网站开发与设计的基本流程.四川工程造价信息网
  • 土木工程网官网wordpress新站SEO优化
  • 唐山中企动力做网站iis7.5 wordpress
  • 网站被降权如何恢复软装设计公司网站
  • 怎样做一个网站平台网站建设思路及设计方案
  • 欧美个人网站公司网站成本
  • vs做asp网站流程网站开发大概多少钱
  • 建立网站一般会遇到什么问题wordpress 纯净版下载
  • odoo 网站页面怎么做Windows下配置WordPress
  • 建设营销网站网络推广怎么找客户
  • 深圳做兼职的网站设计秦皇岛市住房和城乡建设局网站
  • 六盘水南宁网站建设网页制作与网站开发 实验报告
  • 做钢结构网站有哪些创建免费网站需要什么条件
  • wordpress网站被拒登推广点击器
  • 速橙科技有限公司网站建设学校网站欣赏中文
  • 没有建网站怎样做网销长沙seo排名优化公司
  • 拼多多开网店无货源怎么上货昆明网站seo报价
  • 南宁大型网站开发网站开发工作进度表
  • 建设银行网站注册汕头网络推广哪里找
  • 锡林郭勒盟工程建设造管理网站python浪漫星空代码
  • 购物网站介绍asp网站开发 知识
  • 黄埔网站建设阿里巴巴网站怎么做全屏大图
  • 做网单哪个网站最好用如何布置网站
  • 专题型定制网站建设ui培训机构排行榜
  • 网站建设幻灯片背景图片素材企业安全文化建设中的安全承诺是指
  • 网店网站模板WordPress的cms