当前位置: 首页 > news >正文

做网站用哪个开发工具好华为官网商城手机价格

做网站用哪个开发工具好,华为官网商城手机价格,医院网站建设方案书,全网营销推广案例在概率论中, 把有关论证随机变量和的极限分布为正态分布的一类定理称为中心极限定理称为中心极限定理称为中心极限定理。 本文介绍独立同分布序列的中心极限定理。 一 独立同分布序列的中心极限定理 定理1 设X1,X2,...Xn,...X_1, X_2, ...X_n,...X1​,X2​,...Xn…

在概率论中, 把有关论证随机变量和的极限分布为正态分布的一类定理称为中心极限定理称为中心极限定理称为中心极限定理

本文介绍独立同分布序列的中心极限定理。

一 独立同分布序列的中心极限定理

定理1X1,X2,...Xn,...X_1, X_2, ...X_n,...X1,X2,...Xn,... 是独立同分布的随机变量序列, 且具有相同数学期望和方差,E(Xi)=μ,D(Xi)=σ2(i=1,2,...)E(X_i)=\mu, D(X_i)=\sigma^2(i=1,2, ...)E(Xi)=μ,D(Xi)=σ2(i=1,2,...), 记随机变量 Yn=Y_n=Yn=∑i=1nXi−nμnσ\frac{\sum\limits_{i=1}^{n}X_i-n\mu}{\sqrt{n}\sigma}nσi=1nXinμ 的分布函数为Fn(x)F_n(x)Fn(x), 则对于任意实数 xxx,

lim⁡n→∞Fn(x)=lim⁡n→∞P{Yn⩽x}=\lim\limits_{n \rightarrow \infty}F_n(x) =\lim\limits_{n \rightarrow \infty}P\{Y_n \leqslant x\} =nlimFn(x)=nlimP{Ynx}= lim⁡n→∞P\lim\limits_{n \rightarrow \infty}PnlimP{\{{ ∑i=1n−nμnσ\frac{\sum\limits_{i=1}^{n}-n\mu}{ \sqrt{n}\sigma}nσi=1nnμ }\}}

=∫−∞x12πe−t22dt=Φ(x)=\int_{- \infty}^{x}\frac{1}{\sqrt{2\pi}}e^{-\frac{t^2}{2}}dt=\Phi(x)=x2π1e2t2dt=Φ(x)
,

由这一定理可知以下结论:

1.

当n充分大时, 独立同分布的随机变量之和 Zn=∑i=1nXiZ_n=\sum\limits_{i=1}^{n}X_iZn=i=1nXi的分布近似于正态分布 N(nμ,nσ2)N(n\mu, n\sigma^2)N(nμ,nσ2).
中心极限定理告诉我们, 不论X1,X2,...,Xn,...X_1,X_2, ..., X_n,...X1,X2,...,Xn,...同服从什么分布, 当n充分大时, 其和ZnZ_nZn 近似服从正态分布.

2.

考虑 独立同分布的随机变量X1,X2,...,Xn,...X_1, X_2,..., X_n,...X1,X2,...,Xn,... 的平均值 X‾=1n∑i=1nXi\overline X = \frac{1}{n}\sum\limits_{i=1}^{n}X_iX=n1i=1nXi, 有

E(X‾)=E(\overline X) =E(X)= μ\muμ

D(X‾)=D(\overline X)=D(X)= σ2n\frac{\sigma^2}{n}nσ2
,

它的标准化随机变量为 X‾−μσ/n\frac{\overline X - \mu}{\sigma/ \sqrt{n}}σ/nXμ 即为上述YnY_nYn, 因此 X‾−μσ/n\frac{\overline X - \mu}{\sigma/ \sqrt{n}}σ/nXμ 的分布函数即是上述的Fn(x)F_n(x)Fn(x), 因而有

lim⁡n→∞Fn(x)=∫−∞x12πe−t22dt=Φ(x)\lim\limits_{n \rightarrow \infty}F_n(x) =\int_{- \infty}^{x}\frac{1}{\sqrt{2\pi}}e^{-\frac{t^2}{2}}dt = \Phi(x)nlimFn(x)=x2π1e2t2dt=Φ(x).

由此可见, 当n充分大时, 独立同分布随机变量的平均值X‾=1n∑i=1nXi\overline X = \frac{1}{n}\sum\limits_{i=1}^{n}X_iX=n1i=1nXi 的分布近似于正态分布 NNN(μ,σ2n)(\mu, \frac{\sigma^2}{n})(μ,nσ2), 这是独立同分布中心极限定理的另一表达形式


二 棣莫弗—拉普拉斯中心极限定理

此定理是 定理1 的特殊情况。

定理2(棣—拉中心极限定理)

设随机变量ZnZ_nZn是n次独立重复试验中事件A发生的次数, p是事件A发生的概率, 则对于任意实数 xxx

lim⁡n→∞\lim\limits_{n \rightarrow \infty}nlimP{\{{Zn−npnp(1−p)⩽x\frac{Z_n-np}{\sqrt{np(1-p)}}\leqslant xnp(1p)Znnpx}\}}=∫−∞x12πe−t22dt=Φ(x)=\int_{- \infty}^{x}\frac{1}{\sqrt{2\pi}}e^{-\frac{t^2}{2}}dt = \Phi(x)=x2π1e2t2dt=Φ(x).

由棣—拉中心极限定理,得到下列结论:

1.

在贝努利试验中, 若事件A发生的概率为p, 设ZnZ_nZn为n次独立重复试验中事件A发生的频数, 则当n充分大时, ZnZ_nZn 近似服从N(np,np(1−p))N(np, np(1-p))N(np,np(1p)).

2.

在贝努利试验中, 若事件A发生的概率为p, Znn\frac{Z_n}{n}nZn 为n次独立重复试验中事件A 发生的频率, 则当n充分大时, Znn\frac{Z_n}{n}nZn 近似服从N(p,p(1−p)n)N(p, \frac{p(1-p)}{n})N(p,np(1p)).



三 例题

  1. 设随机变量X~B(100, 0.2), Φ(x)\Phi(x)Φ(x) 为标准正态分布函数, 已知Φ(2.5)=0.9938\Phi(2.5)=0.9938Φ(2.5)=0.9938, 应用 中心极限定理, 可得 P{20⩽x⩽3020\leqslant x \leqslant 3020x30} ≈\approx ___________。

    解: X ~ B(100, 0.2), np=20, npq = 16, 则P{20 ⩽x⩽30\leqslant x \leqslant 30x30} = P{20−2016⩽X−2016⩽30−2016}P\{{\frac{20-20}{\sqrt{16}} \leqslant \frac{X-20}{\sqrt{16}} \leqslant \frac{30-20}{\sqrt{16}}}\}P{16202016X20163020} (这一步用到定理2)
    ≈Φ(30−204)−Φ(20−204)=Φ(2.5)−Φ(0)=0.9938−0.5=0.4938\approx \Phi(\frac{30-20}{4}) - \Phi(\frac{20-20}{4}) = \Phi(2.5) - \Phi(0) = 0.9938-0.5 = 0.4938Φ(43020)Φ(42020)=Φ(2.5)Φ(0)=0.99380.5=0.4938.
    答案为 0.4938。
http://www.yayakq.cn/news/49727/

相关文章:

  • 买了个网站源码后要怎么用网页游戏排行榜奇迹
  • 学校网站开发招标企业seo顾问
  • 珠宝网站开发的背景网站建设运营思路
  • 网站所有权 备案唐河企业网站制作怎么样
  • 西安免费公司网站设计淮南网名
  • 大望路做网站的公司昆明网站建设公司猫咪科技
  • 网站 只收录首页官网优化 报价
  • php网站代做如何网站平台建设好
  • 网站建站网站哪家好源汇区建设局网站
  • 手机端网站开发书籍格力电器的网站建设评价
  • 网站建设中什么页面结构自己做一个网站一年的费用
  • 手机网站设计需求分析折扣卡网站建设
  • 建设企业网站公司在哪里好的网页网站设计
  • 手机端网站开发页网站建设报价单初期整理
  • 装饰网站建设优惠套餐网站开发语言什么好
  • 如何建设一个稳定的网站网站建设发布教程
  • 全网营销式网站建功能网站
  • 金华建设网站室内设计联盟邀请码怎么弄
  • 建网站要花多少钱北京seo专员
  • 网站建设最新个性化网站建设定制
  • 网站能需要怎么做才不会被攻击网站打开速度进行检测
  • 米拓cms建站系统做企业网站需要什么
  • 怎么看网站开发者页面医美技术支持东莞网站建设
  • 流量网站怎么做wordpress能仿站吗
  • 网站推广方法渠道成都网络营销公司
  • 铜川微网站建设wordpress可以做手机网
  • 亚洲成成品网站源码用wordpress搭建
  • 零基础网站建设及维护视频课程jQuery EasyUI网站开发实战
  • 聊城app制作网站天津企业网站
  • 网站开发投入产出分析微信微商城开发