qq空间怎么做网站微网站后台怎么注册
工作中需要处理一些GIS数据,在 Python 中解析地理信息系统 (GIS) 的 Shapefile (.shp) 文件通常可以通过 geopandas 库来完成。geopandas 是基于 pandas 的一个扩展库,它支持地理空间数据的操作和分析。
下面是一个简单的示例,展示如何使用 geopandas 读取并解析一个 Shapefile 文件:
-  
首先确保已经安装了
geopandas:pip install geopandas -  
使用
geopandas读取 Shapefile 或压缩的 zip 文件: 
import geopandas as gpd# 指定 Shapefile 的路径
file_path = './data/ne_10m_admin_0_countries.zip'# 读取 Shapefile
data = gpd.read_file(file_path)
protected_lands_area = gpd.read_file('./data/10m_cultural/ne_10m_parks_and_protected_lands_area.shp')# 显示数据的基本信息
print("Data columns:", data.columns)
print("Geometry type:", data.geometry.type)# 显示数据的前几行
print(data.head())
 
Data columns: Index(['featurecla', 'scalerank', 'LABELRANK', 'SOVEREIGNT', 'SOV_A3','ADM0_DIF', 'LEVEL', 'TYPE', 'TLC', 'ADMIN',...'FCLASS_TR', 'FCLASS_ID', 'FCLASS_PL', 'FCLASS_GR', 'FCLASS_IT','FCLASS_NL', 'FCLASS_SE', 'FCLASS_BD', 'FCLASS_UA', 'geometry'],dtype='object', length=169)
Geometry type: 0      MultiPolygon
1      MultiPolygon
2      MultiPolygon
3           Polygon
4      MultiPolygon...     
253    MultiPolygon
254         Polygon
255         Polygon
256         Polygon
257         Polygon
Length: 258, dtype: objectfeaturecla  scalerank  LABELRANK SOVEREIGNT SOV_A3  ADM0_DIF  LEVEL  \
0  Admin-0 country          0          2  Indonesia    IDN         0      2   
1  Admin-0 country          0          3   Malaysia    MYS         0      2   
2  Admin-0 country          0          2      Chile    CHL         0      2   
3  Admin-0 country          0          3    Bolivia    BOL         0      2   
4  Admin-0 country          0          2       Peru    PER         0      2   TYPE TLC      ADMIN  ... FCLASS_TR  FCLASS_ID FCLASS_PL  \
0  Sovereign country   1  Indonesia  ...      None       None      None   
1  Sovereign country   1   Malaysia  ...      None       None      None   
2  Sovereign country   1      Chile  ...      None       None      None   
3  Sovereign country   1    Bolivia  ...      None       None      None   
4  Sovereign country   1       Peru  ...      None       None      None   FCLASS_GR  FCLASS_IT FCLASS_NL FCLASS_SE  FCLASS_BD FCLASS_UA  \
0      None       None      None      None       None      None   
1      None       None      None      None       None      None   
2      None       None      None      None       None      None   
3      None       None      None      None       None      None   
4      None       None      None      None       None      None   geometry  
0  MULTIPOLYGON (((117.70361 4.16341, 117.70361 4...  
1  MULTIPOLYGON (((117.70361 4.16341, 117.69711 4...  
2  MULTIPOLYGON (((-69.51009 -17.50659, -69.50611...  
3  POLYGON ((-69.51009 -17.50659, -69.51009 -17.5...  
4  MULTIPOLYGON (((-69.51009 -17.50659, -69.63832...  [5 rows x 169 columns]
 
- 绘制地图
 
示例数据是全球地图和一些陆地保护区(美国的,红色区域),我们可以将两个数据叠加在一起绘制,代码如下:
import matplotlib.pyplot as plt# 绘制地图
fig, ax = plt.subplots(1, 1)
data.plot(ax=ax)
protected_lands_area.plot(ax=ax, color='red')
plt.show()
 

