当前位置: 首页 > news >正文

怎么免费建立个人网站外语网站建设

怎么免费建立个人网站,外语网站建设,域名解析好了怎么做网站,无锡网站建设哪家做海量数据如何判重? 判断一个值是否存在?解决方法: 1.使用哈希表: 可以将数据进行哈希操作,将数据存储在相应的桶中。 查询时,根据哈希值定位到对应的桶,然后在桶内进行查找。这种方法的时间复…

海量数据如何判重?

判断一个值是否存在?解决方法:

1.使用哈希表:
可以将数据进行哈希操作,将数据存储在相应的桶中。
查询时,根据哈希值定位到对应的桶,然后在桶内进行查找。这种方法的时间复杂度为 O(1),但需要额外的存储空间来存储哈希表。如果桶中存在数据,则说明此值已存在,否则说明未存在。

2.使用布隆过滤器:
布隆过滤器是一种概率型数据结构,用于判断一个元素是否在集合中。它利用多个哈希函数映射数据到一个位数组,并将对应位置置为 1。
查询时,只需要对待查询的数据进行哈希,并判断对应的位是否都为 1。如果都为 1,则该数据可能存在;如果有一个位不为 1,则该数据一定不存在。布隆过滤器的查询时间复杂度为 O(k),其中 k 为哈希函数的个数。

相同点和不同点

相同点:
它们都存在误判的情况。
例如,使用哈希表时,不同元素的哈希值可能相同,所以这样就产生误判了;
而布隆过滤器的特征是,当布隆过滤器说,某个数据存在时,这个数据可能不存在;当布隆过滤器说,某个数据不存在时,那么这个数据一定不存在

不同点:
存储机制:
哈希表使用一个数组来存储键值对,通过哈希函数将键映射到数组的索引位置,然后将值存储在对应的位置上。
布隆过滤器则使用一个位数组(或位向量),通过多个哈希函数将元素映射到位数组的多个位上。

查询操作:
哈希表在进行查询时,通过计算哈希值来定位键值对的存储位置,然后直接获取对应的值。查询时间复杂度通常为 O(1)。
布隆过滤器在进行查询时,也通过多个哈希函数计算多个位,然后判断对应的位是否都为 1 来确定元素是否存在。查询时间复杂度为 O(k),其中 k 为哈希函数的个数。

内存占用:
哈希表需要根据数据规模来动态调整数组的大小,以保证存储效率。
布隆过滤器在预先设置位数组的大小后,不会随数据规模的增加而增长。因此布隆过滤器更适用于海量数据。

结论:
哈希表和布隆过滤器都能实现判重,但它们都会存在误判的情况,但布隆过滤器存储占用的空间更小,更适合海量数据的判重。

布隆过滤器实现原理:

布隆过滤器的实现:主要依靠的是它数据结构中的一个位数组,每次存储键值的时候,不是直接把数据存储在数据结构中,因为这样太占空间了,它是利用几个不同的无偏哈希函数,把此元素的 hash 值均匀的存储在位数组中,也就是说,每次添加时会通过几个无偏哈希函数算出它的位置,把这些位置设置成 1 就完成了添加操作。
当进行元素判断时,查询此元素的几个哈希位置上的值是否为 1,如果全部为 1,则表示此值存在,如果有一个值为 0,则表示不存在。因为此位置是通过 hash 计算得来的,所以即使这个位置是 1,并不能确定是那个元素把它标识为 1 的,因此布隆过滤器查询此值存在时,此值不一定存在,但查询此值不存在时,此值一定不存在。

并且当位数组存储值比较稀疏的时候,查询的准确率越高,而当位数组存储的值越来越多时,误差也会增大。
位数组和 key 之间的关系,如下图
在这里插入图片描述

如何实现布隆过滤器?

1.通过程序实现(内存级别方案):使用 Google Guava 库实现布隆过滤器。
2.通过中间件实现(支持数据持久化):使用 Redis 4.0 之后提供的布隆过滤插件来实现,它的好处是支持持久化,数据不会丢失。

一、什么是Guava
1)Guava库是一个适合很多Java项目的通用工具库
2)Guava工具库中包含了:集合Collection、并发Concurrency、原语Primitive、反射Reflection、比较Comparison、I/O操作、哈希Hash、网络Networking、字符串String、数学函数Math、缓存Caching、内存中的发布/订阅……以及各种级别的数据类型
3)需要JDK 6以上版本

使用 Google Guava 库实现布隆过滤器总共分为以下两步:

  • 引入 Guava 依赖
  • 使用 Guava API 操作布隆过滤器
    ① 引入 Guava 依赖
<dependency><groupId>com.google.guava</groupId><artifactId>guava</artifactId>
</dependency>

② 使用 Guava API

import com.google.common.hash.BloomFilter;
import com.google.common.hash.Funnels;public class BloomFilterExample {public static void main(String[] args) {// 创建一个布隆过滤器,设置期望插入的数据量为10000,期望的误判率为0.01BloomFilter<String> bloomFilter = BloomFilter.create(Funnels.unencodedCharsFunnel(), 10000, 0.01);// 向布隆过滤器中插入数据bloomFilter.put("data1");bloomFilter.put("data2");bloomFilter.put("data3");// 查询元素是否存在于布隆过滤器中System.out.println(bloomFilter.mightContain("data1")); // trueSystem.out.println(bloomFilter.mightContain("data4")); // false}
}

在上述示例中,我们通过 BloomFilter.create() 方法创建一个布隆过滤器,指定了元素序列化方式、期望插入的数据量和期望的误判率。然后,我们可以使用 put() 方法向布隆过滤器中插入数据,使用 mightContain() 方法来判断元素是否存在于布隆过滤器中。

http://www.yayakq.cn/news/992675/

相关文章:

  • 什么做直播网站好网络营销案例分析题
  • 上饶市住房和城乡建设网站旺道智能seo系统
  • 重庆巫山网站设计公司温州互联网公司
  • 作词做曲网站网站制作在线版
  • 北京好的做网站公司房产中介网站模板
  • 帝国网站增加流量包装设计报价明细
  • 正规的佛山网站建设wordpress5.0漏洞利用
  • 域名seo查询广州:推动优化防控措施落地
  • 网站项目报价单模板免费下载wordpress模版 区块链
  • 普通话360网站seo怎么做
  • 网站策划教程九九电视剧免费观看完整版
  • 网站设计项目wordpress远程图片不能访问
  • 杭州做网站小程序公司做盗号网站
  • 常用的网站流量统计软件有哪些如何做网站美工的
  • dedeampz 部署wordpress 网站访问慢营销型网站头部布局的元素
  • 万江做网站网站建设就业
  • 织梦开发小说网站教程公众号投票怎么制作
  • 互联网公司网站沧州做网站哪家好
  • 昆明营销型网站建设谷歌怎么做网站优化
  • 株洲外贸网站建设做阿里巴巴的网站的费用
  • 网站建设预付流程项目建设备案网站
  • 网站开发怎么挣钱会员管理系统软件哪个好
  • 国际物流公司网站建设网站分析 工具
  • 外贸网站架构做翻译小说网站赚钱吗
  • 绿色门业宽屏网站模板 破解品牌设计课程
  • 做网站跟客人怎么沟通关键词排名优化如何
  • wap网站系统企业网盘系统
  • 商务网站开发的基本原则做设计需要素材的常用网站有哪些
  • 胶州做网站响应式网站制作公司
  • 高大上设计网站欣赏闽清网站建设