当前位置: 首页 > news >正文

怎么在vk网站上做推广贵州住房与城乡建设部网站

怎么在vk网站上做推广,贵州住房与城乡建设部网站,凌晨网站建设公司,网站建设明细报价表OpenVINO部署 什么是 OpenVINO?OpenVINO 的优势安装指南系统要求:安装步骤 环境设置部署示例代码优化和部署步骤详细部署示例 什么是 OpenVINO? OpenVINO(Open Visual Inference and Neural Network Optimization)是由…

OpenVINO部署

  • 什么是 OpenVINO?
  • OpenVINO 的优势
  • 安装指南
    • 系统要求:
    • 安装步骤
  • 环境设置
  • 部署示例代码
  • 优化和部署步骤
  • 详细部署示例

什么是 OpenVINO?

OpenVINO(Open Visual Inference and Neural Network Optimization)是由英特尔开发的工具包,旨在优化和加速在各种英特尔架构(如CPU、GPU和FPGA)上的深度学习推理,特别侧重于计算机视觉任务。该工具包支持来自流行框架(如TensorFlow和PyTorch)的模型,将它们转换为适合在英特尔硬件上部署的中间表示。

OpenVINO 的优势

OpenVINO的一个显著优势是能够显著减少推理时间。例如,一位在Kaggle比赛中获得第二名的参赛者指出,将PyTorch模型转换为OpenVINO模型可以减少约40%的推理时间。这在比赛条件要求只使用CPU且运行时间必须在120分钟以内时尤为重要。

安装指南

系统要求:

  • 支持的操作系统:Windows、Linux、macOS、Raspbian OS
  • 支持的硬件:英特尔CPU、集成GPU、英特尔神经计算棒2和带有Movidius VPU的英特尔视觉加速设计

安装步骤

Windows:

  • 使用安装程序:
    • 从 OpenVINO工具包页面下载安装程序。
    • 运行安装程序并按照屏幕上的说明进行操作。
    • 通过运行 setupvars.bat 设置环境变量。
  • 使用PyPI:
 pip install openvino

`

Linux

  • 使用APT:
wget -qO- https://apt.repos.intel.com/openvino/2023.0/setup.sh | sudo bash
sudo apt install openvino-runtime-ubuntu22
  • 使用Docker:
docker pull openvino/ubuntu20_runtime:2023.0
docker run -it openvino/ubuntu20_runtime:2023.0

macOS:

  • 使用Homebrew:
brew install openvino

Raspbian OS:

  • 请参阅具体的 Raspbian安装指南。

环境设置

  1. 配置环境变量:
    • 对于Windows:
"C:\Program Files (x86)\Intel\openvino\bin\setupvars.bat"
    • 对于Linux/macOS:
source /opt/intel/openvino/bin/setupvars.sh
  1. 验证安装:
    运行以下命令以检查安装:
python -c "import openvino; print(openvino.__version__)"

部署示例代码

PyTorch 模型部署:

import openvino as ov
import torch# 加载PyTorch模型
model = torch.hub.load("pytorch/vision", "shufflenet_v2_x1_0", weights="DEFAULT")
example = torch.randn(1, 3, 224, 224)# 转换为OpenVINO模型
ov_model = ov.convert_model(model, example_input=(example,))# 编译并运行推理
core = ov.Core()
compiled_model = core.compile_model(ov_model, 'CPU')
output = compiled_model({0: example.numpy()})
print(output)

TensorFlow 模型部署:

import openvino as ov
import tensorflow as tf
import numpy as np# 加载TensorFlow模型
model = tf.keras.applications.MobileNetV2(weights='imagenet')# 转换为OpenVINO模型
ov_model = ov.convert_model(model)# 编译并运行推理
core = ov.Core()
compiled_model = core.compile_model(ov_model, 'CPU')
data = np.random.rand(1, 224, 224, 3)
output = compiled_model({0: data})
print(output)

优化和部署步骤

OpenVINO 提供了各种工具来优化模型:

  • 模型优化器:转换和优化模型。
  • 训练后优化工具:调整模型以获得更好的性能。
  • 基准测试工具:测量推理性能。
  • 有关详细步骤和高级配置,请参阅官方的 OpenVINO文档 和 GitHub 仓库。

详细部署示例

  1. 准备环境
    • 安装必要的软件包:
!pip install openvino-dev[onnx]
  1. 创建并保存模型
import torch
import timm
from torch.onnx import export# 从timm加载预训练模型
model = timm.create_model('resnet50', pretrained=True)
model.eval()# 为模型设置虚拟输入;这应该与模型的输入大小匹配
input_tensor = torch.randn(1, 3, 224, 224)# 导出模型
output_onnx = 'model.onnx'
export(model, input_tensor, output_onnx, opset_version=11, input_names=['input'], output_names=['output'])
  1. 将模型转换为OpenVINO格式
!mo --input_model /kaggle/working/model.onnx --output_dir /kaggle/working --input_shape [1,3,224,224]
  1. 定义OpenVINO对象并执行推理
from openvino.runtime import Core# 初始化推理引擎
ie = Core()# 从IR文件读取网络和相应的权重
model_path = '/kaggle/working/model.xml'  # .xml文件的路径
model = ie.read_model(model=model_path)# 为特定设备编译模型
compiled_model = ie.compile_model(model=model_path, device_name='CPU')
infer_request = compiled_model.create_infer_request()# 获取输入和输出层
input_layer = compiled_model.input(0)
output_layer = compiled_model.output(0)# 准备输入数据(例如,处理成张量的图像)
input_sample = torch.randn(1, 3, 224, 224)
# 检索第一个输入层的名称并创建字典
inputs = {input_layer.any_name: input_sample}# 执行推理
result = infer_request.infer(inputs=inputs)# 访问结果
output = result[output_layer]
# 1000类分类
print(len(output[0]))
print(output)

时间测量(可选)

测量推理时间:

import time
import numpy as nptimes = []
loop = 10  # 时间测量的循环次数
for i in range(loop):t1 = time.time()infer_request.infer(inputs)t2 = time.time()times.append(t2 - t1)print("平均推理时间:", np.mean(times))
http://www.yayakq.cn/news/359879/

相关文章:

  • 判断网站到期游戏公司网站模板
  • 上海网站开发哪里好薇有哪些免费推广网站
  • 如何自己做外贸网站怎么选择电商网站建设
  • 商务网站建设实验记录免费网站生成器
  • iphone开发网站与网站建设有关的课程和知识点
  • 网站设计开发人员高端网站设计新感觉建站
  • 东莞南城网站建设百度搜索平台
  • 怎么做招聘网站链接网站编辑是个长期做的工作吗
  • 做淘宝店和做网站上海网站快速排名提升
  • 网站建设中采用的技术建设企业网站技术解决方案
  • 网站开发手机编译器湖南云网站建设
  • app开发编程网站文章优化事项
  • 西安网站群搭建有的网站域名解析错误
  • 济源做网站的好公司手机网站页面文字做多大
  • 大学英文网站建设举措手机网站最小宽度
  • 建设网站客户资源从渠道来网站建设风险管理计划书
  • h5商城网站 源代码引流软件有哪些
  • 做网站常用的套件好看的手机网站模板
  • 建材网站模板ui网页设计高手
  • 网站开发语言为中裕隆建设有限公司网站
  • 社交网站开发 转发中国建筑集团有限公司官网测评网址
  • 自己做自营网站中国建设工程协会网站
  • 东莞网站关键词推广文件夹里内容做网站的分类
  • 企业网站建设兴田德润怎么联系软件商店安装最新版下载
  • 山东城乡建设厅网站梅州住房和城乡建设部网站
  • 外贸网站源码海南网站建设优化排名
  • 怎样做网站导航栏媒体宣传推广方案
  • 深圳 建设工程招标有限公司网站电商小程序开发需要多少钱
  • 直播网站开发要多久.net网站方案
  • 乐清市做淘宝网站公司郑州网络推广平台有哪些