当前位置: 首页 > news >正文

建筑网站排行一般做企业网站需要什么

建筑网站排行,一般做企业网站需要什么,怎么解决,怎么做网站流量统计分析NCNN的编译运行交叉编译 1.在Ubuntu上编译运行ncnn1)编译ncnn x86 linux2)测试ncnn x86 linux 2. 模型转换1)onnx2)pnnx 3.在x86上加载推理模型1)准备工作2)编写C推理代码3)编写Cmakelist编译 4.在MIPS上进行交叉编译推理1&#x…

NCNN的编译运行交叉编译

  • 1.在Ubuntu上编译运行ncnn
    • 1)编译ncnn x86 linux
    • 2)测试ncnn x86 linux
  • 2. 模型转换
    • 1)onnx
    • 2)pnnx
  • 3.在x86上加载推理模型
    • 1)准备工作
    • 2)编写C++推理代码
    • 3)编写Cmakelist编译
  • 4.在MIPS上进行交叉编译推理
    • 1)编译mips版本opencv
    • 2)编译mips版本ncnn
    • 3)编译上述efficientnetb0.cpp demo程序
    • 4)运行推理

1.在Ubuntu上编译运行ncnn

1)编译ncnn x86 linux

// ubuntu安装依赖
sudo apt install build-essential git cmake libprotobuf-dev protobuf-compiler libomp-dev libvulkan-dev vulkan-tools libopencv-dev
// 下载ncnn以及三方库
git clone https://github.com/Tencent/ncnn.git
git submodule update --init
// 编译
cd ncnn
mkdir -p build
cd build
cmake -DCMAKE_BUILD_TYPE=Release -DNCNN_VULKAN=ON -DNCNN_BUILD_EXAMPLES=ON ..
make -j$(nproc)

在这里插入图片描述

// 安装到install文件夹
make install prefix=./install

检查一下install文件夹里是不是生成了bin,include和lib
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

2)测试ncnn x86 linux

上面我们编译的时候打开了-DNCNN_BUILD_EXAMPLES=ON,所以这里就用编译好的例子试一下,由于squeezenet提供了权重文件,所以直接测这个。
在这里插入图片描述
把权重文件复制到build/examples里
在这里插入图片描述
我们可以看一下squeezent.cpp里,ncnn需要加载.bin和.param模型文件,所以放到同一文件夹。
在这里插入图片描述
然后运行

cd build/examples
./squeezenet ../../images/256-ncnn.png

在这里插入图片描述
运行成功!

2. 模型转换

这里用pytorch onnx来举例子,简单的模型可以用ncnn编译好的bin来直接转换。

1)onnx

在这里插入图片描述

./onnx2ncnn a.onnx a.param a.bin

这边的param就是模型的结构描述文件,bin是模型的具体权重
如果不行尝试使用onnx-simplifier先处理一下模型

onnxsim a.onnx a_sim.onnx

然后再转换a_sim.onnx,这里不多赘述,自行尝试。

2)pnnx

如果我们直接从onnx转换到ncnn的模型经常会出现不兼容不能完全转换的情况,所以我们这边直接使用pnnx来进行模型转换。

PyTorch Neural Network eXchange
pnnx github
PyTorch Neural Network eXchange(PNNX) is an open standard for PyTorch model interoperability. PNNX provides an open model format for PyTorch. It defines computation graph as well as high level operators strictly matches PyTorch.

我们以efficientnet为例
链接: https://github.com/lukemelas/EfficientNet-PyTorch

import torch
from torchsummary import summary
from efficientnet_pytorch import EfficientNetdevice = torch.device("cuda" if torch.cuda.is_available() else "cpu")# 初始化模型
model = EfficientNet.from_pretrained('efficientnet-b0', advprop=True, num_classes=10)
model.to(device)
# 加载训练好的权重
params_dict = torch.load(r"best.pth")
# 如果训练的时候是多卡使用DataParallel来训的需要用.module.state_dict()得到权重dict
model.load_state_dict(params_dict.module.state_dict())summary(model, (3, 416, 416))
# efficientnet训练时候用了memory efficient swish激活,导出的时候换成普通swich提高兼容性
model.set_swish(memory_efficient=False)
# model_pt = torch.save(model_pt)model.eval()dummy_in = torch.randn(1, 3, 416, 416, requires_grad=True).to(device)
# 导出torchscript权重
mod = torch.jit.trace(model,dummy_in)
torch.jit.save(mod,"efb0_pnnx.pt")
pip install pnnx
pnnx ./efb0_pnnx.pt inputshape=[1,3,416,416]

然后会生成一堆文件,我们需要的就是.param和.bin文件
在这里插入图片描述

3.在x86上加载推理模型

1)准备工作

编译好的ncnn(看第一步)
编译好的opencv(如果不想重新编译直接sudo apt install libopencv-dev)

2)编写C++推理代码

文件结构
demo
----CMakeList.txt
----1.jpg
----src
--------effcientnetb0.cpp
----build
----bin

#include <iostream>
#include "net.h"
#include <algorithm>
#include <opencv2/core/core.hpp>
#include <opencv2/highgui/highgui.hpp>
#include <stdio.h>int main(int argc, char** argv)
{const char* img_path = argv[1];// opencv读取图片cv::Mat m = cv::imread(img_path, 1);// 图像归一化(这边视情况采用训练相同的归一化方法)m = m / 255.0 ;if (m.empty()){fprintf(stderr, "cv::imread %s failed\n", img_path);return -1;}// 创建ncnn网络ncnn::Net efficientb0; efficientb0.opt.use_vulkan_compute = true; // 加载权重if (efficientb0.load_param("model_param/efficientb0/efb0_pnnx.ncnn.param"))exit(-1);if (efficientb0.load_model("model_param/efficientb0/efb0_pnnx.ncnn.bin"))exit(-1);// 把opencv mat的data矩阵加载到ncnn mat中准备作为推理的输入ncnn::Mat in = ncnn::Mat::from_pixels_resize(m.data, ncnn::Mat::PIXEL_BGR2RGB, m.cols, m.rows, 416, 416);ncnn::Extractor ex = efficientb0.create_extractor();//在.param文件中找到输入的节点名称in0ex.input("in0", in);  ncnn::Mat out;//在.param文件中找到输出的节点名称out0,推理结束ex.extract("out0", out); //输出推理结果for (int i = 0; i < out.w; i++){std::cout << i <<out[i] << std::endl;}return 0;
}

如何查看输入输出的名称如下图
在这里插入图片描述
在这里插入图片描述

3)编写Cmakelist编译

project(NCNN_DEMO)
cmake_minimum_required(VERSION 2.8.12)
set(CMAKE_BUILD_TYPE Debug)set(CMAKE_PREFIX_PATH ${CMAKE_PREFIX_PATH} "改成第一步编译好的ncnn路径xxx/ncnn/build/install/")find_package(OpenCV REQUIRED)
find_package(ncnn)
if(ncnn_FOUND)set(CMAKE_RUNTIME_OUTPUT_DIRECTORY ${CMAKE_SOURCE_DIR}/bin)add_executable(efficientnetb0 src/efficientb0.cpp)target_link_libraries(efficientnetb0 ncnn ${OpenCV_LIBS})else()message(WARNING "ncnn not found, please check CMAKE_PREFIX_PATH")
endif()   
# 创建build文件夹
cd build
cmake ..
make
//使用编译好的程序进行推理
./bin/effcientnetb0 ./1.jpg

输出结果
在这里插入图片描述可以看到linear层的推理结果输出了,选最大的一个index就是分类结果,至此,x86上全部的推理工作就做好了。

4.在MIPS上进行交叉编译推理

Arm等平台教程比较多,我们使用mips的嵌入式开发版君正x2000进行讲解。

1)编译mips版本opencv

2)编译mips版本ncnn

3)编译上述efficientnetb0.cpp demo程序

4)运行推理

http://www.yayakq.cn/news/989652/

相关文章:

  • 怎样做网站的轮播图片wordpress网站关键词
  • 如何做影视网站云南医疗seo整站优化
  • lanyun网站开发网站建设报价是多少
  • 爱美眉网站源码做网站要什么条件
  • 企业网站源码怎么获取企业做网站注意事项
  • 如何建立商城网站咖啡豆网站模板
  • 网站栏目设计内容网站域名已经被绑定
  • 乐清手机网站网站视频不能下载怎么保存视频
  • 网站项目申请网站改版不更换域名 .net怎么做301网站重定向
  • 网站固定通栏代码做海报的素材哪个网站
  • 做网站须要什么技术工业vi设计
  • 张店网站制作首选专家网页设计与网站开发的卷子
  • 手游源码网站长沙网站建设长沙建设银行
  • 大网站建设工程建设项目管理系统
  • 网站交互做的比较好的东莞常平镇地图全图
  • 做一个公司的网站应做哪些准备常州网站制作计划
  • 高端网站建设公司排名网站建设支付
  • 余姚企业网站建设公司建设安全监督网
  • 北京网站建设公司兴田德润电话wordpress男性模板
  • 网站可信度建设有多少种做网站后台程序
  • 株洲营销网站建设音乐网站建设目标
  • 自助小站网站关键词做标签
  • 台州做网站那家好网站如何生成静态页面
  • 集团网站群建设方案普通电脑可以做网站服务器
  • 网站内容丰富优秀网站开发公司
  • 东莞品牌型网站建设价格石家庄 网站编辑
  • 网站开发追款单建模e-r跟做网站有什么关系
  • 做盗版网站引流安卓内核级优化神器
  • 芜湖营销型网站建设国外vps加速免费下载
  • 做网站的公司倒闭了上海市建设工程咨询