当前位置: 首页 > news >正文

宜昌网站推广优化技巧网站设计师是什么专业

宜昌网站推广优化技巧,网站设计师是什么专业,iis搭建网站,西安哪家网络公司做网站目录 简介 需要的基础包和配置 二、主要组件介绍 2.1 parse_model 2.2Detect类 2.3DetectionModel类 三、实验 🍨 本文为[🔗365天深度学习训练营]内部限免文章(版权归 *K同学啊* 所有) 🍖 作者:[K同学啊…

目录

 简介

 需要的基础包和配置

 二、主要组件介绍

2.1 parse_model

2.2Detect类

2.3DetectionModel类

三、实验


🍨 本文为[🔗365天深度学习训练营]内部限免文章(版权归 *K同学啊* 所有)
🍖 作者:[K同学啊]

 这周接着详细解析小白YOLOv5全流程-训练+实现数字识别_牛大了2022的博客-CSDN博客_yolov5识别数字,之前入门教大家下载配置环境,如果没有的话请参考这篇的文章深度学习Week11-调用官方权重进行检测(YOLOv5)_yolov5权重_牛大了2022的博客-CSDN博客

📌 本周任务:将YOLOv5s网络模型中的C3模块按照下图方式修改形成C2模块,并将C2模块插入第2层与第3层之间,且跑通YOLOv5s。
●💫 任务提示:
  ○提示1:需要修改common.yaml、yolo.py、yolov5s.yaml文件。
  ○提示2:C2模块与C3模块是非常相似的两个模块,我们要插入C2到模型当中,只需要找到哪里有C3模块,然后在其附近加上C2即可。

 简介

common.py文件位置在./models/yolo.py

 需要的基础包和配置

import argparse
import contextlib
import os
import platform
import sys
from copy import deepcopy
from pathlib import PathFILE = Path(__file__).resolve()
ROOT = FILE.parents[1]  # YOLOv5 root directory
if str(ROOT) not in sys.path:sys.path.append(str(ROOT))  # add ROOT to PATH
if platform.system() != 'Windows':ROOT = Path(os.path.relpath(ROOT, Path.cwd()))  # relativefrom models.common import *
from models.experimental import *
from utils.autoanchor import check_anchor_order
from utils.general import LOGGER, check_version, check_yaml, make_divisible, print_args
from utils.plots import feature_visualization
from utils.torch_utils import (fuse_conv_and_bn, initialize_weights, model_info, profile, scale_img, select_device,time_sync)try:import thop  # for FLOPs computation
except ImportError:thop = None

 二、主要组件介绍

2.1 parse_model

用于将模型的模块拼接起来,搭建完成的网络模型。不是固定的,改框架也要改这个函数。

def parse_model(d, ch):  # model_dict, input_channels(3)# Parse a YOLOv5 model.yaml dictionaryLOGGER.info(f"\n{'':>3}{'from':>18}{'n':>3}{'params':>10}  {'module':<40}{'arguments':<30}")anchors, nc, gd, gw, act = d['anchors'], d['nc'], d['depth_multiple'], d['width_multiple'], d.get('activation')if act:Conv.default_act = eval(act)  # redefine default activation, i.e. Conv.default_act = nn.SiLU()LOGGER.info(f"{colorstr('activation:')} {act}")  # printna = (len(anchors[0]) // 2) if isinstance(anchors, list) else anchors  # number of anchorsno = na * (nc + 5)  # number of outputs = anchors * (classes + 5)layers, save, c2 = [], [], ch[-1]  # layers, savelist, ch outfor i, (f, n, m, args) in enumerate(d['backbone'] + d['head']):  # from, number, module, argsm = eval(m) if isinstance(m, str) else m  # eval stringsfor j, a in enumerate(args):with contextlib.suppress(NameError):args[j] = eval(a) if isinstance(a, str) else a  # eval stringsn = n_ = max(round(n * gd), 1) if n > 1 else n  # depth gainif m in {Conv, GhostConv, Bottleneck, GhostBottleneck, SPP, SPPF, DWConv, MixConv2d, Focus, CrossConv,BottleneckCSP, C3, C3TR, C3SPP, C3Ghost, nn.ConvTranspose2d, DWConvTranspose2d, C3x}:c1, c2 = ch[f], args[0]if c2 != no:  # if not outputc2 = make_divisible(c2 * gw, 8)args = [c1, c2, *args[1:]]if m in {BottleneckCSP, C3, C3TR, C3Ghost, C3x}:args.insert(2, n)  # number of repeatsn = 1elif m is nn.BatchNorm2d:args = [ch[f]]elif m is Concat:c2 = sum(ch[x] for x in f)# TODO: channel, gw, gdelif m in {Detect, Segment}:args.append([ch[x] for x in f])if isinstance(args[1], int):  # number of anchorsargs[1] = [list(range(args[1] * 2))] * len(f)if m is Segment:args[3] = make_divisible(args[3] * gw, 8)elif m is Contract:c2 = ch[f] * args[0] ** 2elif m is Expand:c2 = ch[f] // args[0] ** 2else:c2 = ch[f]m_ = nn.Sequential(*(m(*args) for _ in range(n))) if n > 1 else m(*args)  # modulet = str(m)[8:-2].replace('__main__.', '')  # module typenp = sum(x.numel() for x in m_.parameters())  # number paramsm_.i, m_.f, m_.type, m_.np = i, f, t, np  # attach index, 'from' index, type, number paramsLOGGER.info(f'{i:>3}{str(f):>18}{n_:>3}{np:10.0f}  {t:<40}{str(args):<30}')  # printsave.extend(x % i for x in ([f] if isinstance(f, int) else f) if x != -1)  # append to savelistlayers.append(m_)if i == 0:ch = []ch.append(c2)return nn.Sequential(*layers), sorted(save)

2.2Detect类

构建Detect层的,将输入feature map 通过一个卷积操作和公式计算到我们想要的shape,为后面的计算损失或者NMS作准备。

class Detect(nn.Module):# YOLOv5 Detect head for detection modelsstride = None  # strides computed during builddynamic = False  # force grid reconstructionexport = False  # export modedef __init__(self, nc=80, anchors=(), ch=(), inplace=True):  # detection layersuper().__init__()self.nc = nc  # number of classesself.no = nc + 5  # number of outputs per anchorself.nl = len(anchors)  # number of detection layersself.na = len(anchors[0]) // 2  # number of anchorsself.grid = [torch.empty(0) for _ in range(self.nl)]  # init gridself.anchor_grid = [torch.empty(0) for _ in range(self.nl)]  # init anchor gridself.register_buffer('anchors', torch.tensor(anchors).float().view(self.nl, -1, 2))  # shape(nl,na,2)self.m = nn.ModuleList(nn.Conv2d(x, self.no * self.na, 1) for x in ch)  # output convself.inplace = inplace  # use inplace ops (e.g. slice assignment)def forward(self, x):z = []  # inference outputfor i in range(self.nl):x[i] = self.m[i](x[i])  # convbs, _, ny, nx = x[i].shape  # x(bs,255,20,20) to x(bs,3,20,20,85)x[i] = x[i].view(bs, self.na, self.no, ny, nx).permute(0, 1, 3, 4, 2).contiguous()if not self.training:  # inferenceif self.dynamic or self.grid[i].shape[2:4] != x[i].shape[2:4]:self.grid[i], self.anchor_grid[i] = self._make_grid(nx, ny, i)if isinstance(self, Segment):  # (boxes + masks)xy, wh, conf, mask = x[i].split((2, 2, self.nc + 1, self.no - self.nc - 5), 4)xy = (xy.sigmoid() * 2 + self.grid[i]) * self.stride[i]  # xywh = (wh.sigmoid() * 2) ** 2 * self.anchor_grid[i]  # why = torch.cat((xy, wh, conf.sigmoid(), mask), 4)else:  # Detect (boxes only)xy, wh, conf = x[i].sigmoid().split((2, 2, self.nc + 1), 4)xy = (xy * 2 + self.grid[i]) * self.stride[i]  # xywh = (wh * 2) ** 2 * self.anchor_grid[i]  # why = torch.cat((xy, wh, conf), 4)z.append(y.view(bs, self.na * nx * ny, self.no))return x if self.training else (torch.cat(z, 1),) if self.export else (torch.cat(z, 1), x)def _make_grid(self, nx=20, ny=20, i=0, torch_1_10=check_version(torch.__version__, '1.10.0')):d = self.anchors[i].devicet = self.anchors[i].dtypeshape = 1, self.na, ny, nx, 2  # grid shapey, x = torch.arange(ny, device=d, dtype=t), torch.arange(nx, device=d, dtype=t)yv, xv = torch.meshgrid(y, x, indexing='ij') if torch_1_10 else torch.meshgrid(y, x)  # torch>=0.7 compatibilitygrid = torch.stack((xv, yv), 2).expand(shape) - 0.5  # add grid offset, i.e. y = 2.0 * x - 0.5anchor_grid = (self.anchors[i] * self.stride[i]).view((1, self.na, 1, 1, 2)).expand(shape)return grid, anchor_grid

2.3DetectionModel类

模型的构建工场,指定模型的yaml文件,以及一系列的训练参数

class DetectionModel(BaseModel):# YOLOv5 detection modeldef __init__(self, cfg='yolov5s.yaml', ch=3, nc=None, anchors=None):  # model, input channels, number of classessuper().__init__()if isinstance(cfg, dict):self.yaml = cfg  # model dictelse:  # is *.yamlimport yaml  # for torch hubself.yaml_file = Path(cfg).namewith open(cfg, encoding='ascii', errors='ignore') as f:self.yaml = yaml.safe_load(f)  # model dict# Define modelch = self.yaml['ch'] = self.yaml.get('ch', ch)  # input channelsif nc and nc != self.yaml['nc']:LOGGER.info(f"Overriding model.yaml nc={self.yaml['nc']} with nc={nc}")self.yaml['nc'] = nc  # override yaml valueif anchors:LOGGER.info(f'Overriding model.yaml anchors with anchors={anchors}')self.yaml['anchors'] = round(anchors)  # override yaml valueself.model, self.save = parse_model(deepcopy(self.yaml), ch=[ch])  # model, savelistself.names = [str(i) for i in range(self.yaml['nc'])]  # default namesself.inplace = self.yaml.get('inplace', True)# Build strides, anchorsm = self.model[-1]  # Detect()if isinstance(m, (Detect, Segment)):s = 256  # 2x min stridem.inplace = self.inplaceforward = lambda x: self.forward(x)[0] if isinstance(m, Segment) else self.forward(x)m.stride = torch.tensor([s / x.shape[-2] for x in forward(torch.zeros(1, ch, s, s))])  # forwardcheck_anchor_order(m)m.anchors /= m.stride.view(-1, 1, 1)self.stride = m.strideself._initialize_biases()  # only run once# Init weights, biasesinitialize_weights(self)self.info()LOGGER.info('')def forward(self, x, augment=False, profile=False, visualize=False):if augment:return self._forward_augment(x)  # augmented inference, Nonereturn self._forward_once(x, profile, visualize)  # single-scale inference, traindef _forward_augment(self, x):img_size = x.shape[-2:]  # height, widths = [1, 0.83, 0.67]  # scalesf = [None, 3, None]  # flips (2-ud, 3-lr)y = []  # outputsfor si, fi in zip(s, f):xi = scale_img(x.flip(fi) if fi else x, si, gs=int(self.stride.max()))yi = self._forward_once(xi)[0]  # forward# cv2.imwrite(f'img_{si}.jpg', 255 * xi[0].cpu().numpy().transpose((1, 2, 0))[:, :, ::-1])  # saveyi = self._descale_pred(yi, fi, si, img_size)y.append(yi)y = self._clip_augmented(y)  # clip augmented tailsreturn torch.cat(y, 1), None  # augmented inference, traindef _descale_pred(self, p, flips, scale, img_size):# de-scale predictions following augmented inference (inverse operation)if self.inplace:p[..., :4] /= scale  # de-scaleif flips == 2:p[..., 1] = img_size[0] - p[..., 1]  # de-flip udelif flips == 3:p[..., 0] = img_size[1] - p[..., 0]  # de-flip lrelse:x, y, wh = p[..., 0:1] / scale, p[..., 1:2] / scale, p[..., 2:4] / scale  # de-scaleif flips == 2:y = img_size[0] - y  # de-flip udelif flips == 3:x = img_size[1] - x  # de-flip lrp = torch.cat((x, y, wh, p[..., 4:]), -1)return pdef _clip_augmented(self, y):# Clip YOLOv5 augmented inference tailsnl = self.model[-1].nl  # number of detection layers (P3-P5)g = sum(4 ** x for x in range(nl))  # grid pointse = 1  # exclude layer counti = (y[0].shape[1] // g) * sum(4 ** x for x in range(e))  # indicesy[0] = y[0][:, :-i]  # largei = (y[-1].shape[1] // g) * sum(4 ** (nl - 1 - x) for x in range(e))  # indicesy[-1] = y[-1][:, i:]  # smallreturn ydef _initialize_biases(self, cf=None):  # initialize biases into Detect(), cf is class frequency# https://arxiv.org/abs/1708.02002 section 3.3# cf = torch.bincount(torch.tensor(np.concatenate(dataset.labels, 0)[:, 0]).long(), minlength=nc) + 1.m = self.model[-1]  # Detect() modulefor mi, s in zip(m.m, m.stride):  # fromb = mi.bias.view(m.na, -1)  # conv.bias(255) to (3,85)b.data[:, 4] += math.log(8 / (640 / s) ** 2)  # obj (8 objects per 640 image)b.data[:, 5:5 + m.nc] += math.log(0.6 / (m.nc - 0.99999)) if cf is None else torch.log(cf / cf.sum())  # clsmi.bias = torch.nn.Parameter(b.view(-1), requires_grad=True)

三、实验

C2 模块结构图

 任务:如图所示,将C3模块改为C2模块,并将C2模块插入到第二层与第三层之间,并跑通代码。

common.py中 

 yolov5s.yaml

 yolo.py

注意添加修改会涉及多处地方。

http://www.yayakq.cn/news/751965/

相关文章:

  • 宁波网站制作怎样wordpress 请求流程
  • 淘宝官方网站登录注册洛阳哪家网站做的好
  • 网站推广的作用省通信管理局 网站备案制度流程
  • 好的企业管理网站小网站开发框架
  • 杭州的网站建设公司wordpress给菜单栏加颜色
  • 网站建设分辨率做外贸没有网站需要
  • 如何快速自己做网站中国建筑人才招聘官网
  • 北京企业官网建站阿里云wordpress 备份数据
  • 如何提高网站点击率WordPress添加图片模块
  • 如何创建网站详细步骤网易企业邮箱登录一下
  • 做网站需要懂代码么在哪些网站可以发布推广信息
  • 网站建设的经验之谈网站定制项目
  • 做h5页面的网站有哪些食品厂招男女工5000
  • 宜宾市城乡建设厅网站北航做网站公司
  • 深圳网站建设网站制作公司平台网站建设源码
  • 做外贸怎么在阿里云建网站安装wordpress500
  • 外贸社交网站排名做网站考虑的方面
  • 开拓网站建设兴仁市建设局网站
  • 表白网站制作系统源码网站开发培训价格
  • 成都快速建站模板品牌网站建设源码
  • 网站内容优化wordpress制作小程序
  • 企业站网页制作实训步骤4p营销理论
  • 中国建设会计网站阿里虚拟机建设网站
  • 富阳区建设局网站微信营销网络营销方式
  • 长春有免费做网站的么娱乐网站设计SEO
  • 有做喜糖的网站吗wordpress 自动超链接
  • 网站建设 服务内容建设苏州旅游网站的方案策划书
  • 成都工程建设信息网站seo托管服务
  • 网站快速收录提交免费创建网站
  • 南京企业网站开发公司注册域名网站