当前位置: 首页 > news >正文

网站 备案 名称河南网站建设的详细策划

网站 备案 名称,河南网站建设的详细策划,北京电力交易中心谢开,动漫制作专业有哪些职业岗位LeetCode 代码随想录跟练 Day15 110.平衡二叉树257.二叉树的所有路径404.左叶子之和222.完全二叉树的节点个数 110.平衡二叉树 题目描述: 给定一个二叉树,判断它是否是 平衡二叉树 平衡二叉树的定义是,对于树中的每个节点,其左右…

LeetCode 代码随想录跟练 Day15

  • 110.平衡二叉树
  • 257.二叉树的所有路径
  • 404.左叶子之和
  • 222.完全二叉树的节点个数

110.平衡二叉树

题目描述:

给定一个二叉树,判断它是否是 平衡二叉树

平衡二叉树的定义是,对于树中的每个节点,其左右子树的高度差不超过1。思路使用递归,对比左子树和右子树的高度差是否超过1,若超过1则当前节点返回-1作为标示,否则返回当前节点的最大深度。代码如下:

class Solution {
private:int traverse(TreeNode* root) {if (root == nullptr) return 0;int leftHeight = traverse(root->left);int rightHeight = traverse(root->right);if (leftHeight == -1 || rightHeight == -1) {return -1;}if (leftHeight - rightHeight > 1 || leftHeight - rightHeight < -1) {return -1;}return max(leftHeight, rightHeight) + 1;}public:bool isBalanced(TreeNode* root) {int height = traverse(root);if (height == -1) return false;return true;}
};

257.二叉树的所有路径

题目描述:

给你一个二叉树的根节点 root ,按 任意顺序 ,返回所有从根节点到叶子节点的路径。
叶子节点 是指没有子节点的节点。

主要思路为对树进行遍历并将遍历时的当前路径记录,并在到达叶子节点后将当前路径添加到结果中。同时在遍历过程中需要对路径的状态实时进行回溯,比如从当前节点退出,上一个节点的路径中就不应再保留当前节点的信息。这里使用字符串值传递方式,可以非显式的实现回溯。代码如下:

class Solution {
private:void traverse(TreeNode* root, string path, vector<string>& paths) {if (root == nullptr) return;if (!path.empty()) path += "->";path += to_string(root->val);if (!root->left && !root->right) {paths.push_back(path);return;}traverse(root->left, path, paths);traverse(root->right, path, paths);}public:vector<string> binaryTreePaths(TreeNode* root) {vector<string> res;if (root == nullptr) return res;traverse(root, "", res);return res;}
};

另外使用迭代法进行遍历时,原理相同,在push节点进入记录节点的stack时同时将当前路径同时push进入记录路径的stack中,这样在每次循环获取当前节点时获取到的路径是对应的。注意在分别对左右节点的路径修改时,由于存在需要在处理前一个之后继续处理后一个的情况(左右节点都不为nullptr),所以不能修改path变量而是应该通过临时变量记录路径并入栈。代码如下:

class Solution {
public:vector<string> binaryTreePaths(TreeNode* root) {vector<string> res;if (root == nullptr) return res;stack<TreeNode*> nodeStk;stack<string> pathStk;nodeStk.push(root);pathStk.push(to_string(root->val));while (!nodeStk.empty()) {TreeNode* cur = nodeStk.top(); nodeStk.pop();string path = pathStk.top(); pathStk.pop();if (!cur->left && !cur->right) {res.push_back(path);continue;}if (cur->left) {nodeStk.push(cur->left);pathStk.push(path + "->" + to_string(cur->left->val));}if (cur->right) {nodeStk.push(cur->right);pathStk.push(path + "->" + to_string(cur->right->val));}}return res;}
};

404.左叶子之和

题目描述:

给定二叉树的根节点 root ,返回所有左叶子之和。
示例 1:
在这里插入图片描述
输入: root = [3,9,20,null,null,15,7]
输出: 24
解释: 在这个二叉树中,有两个左叶子,分别是 9 和 15,所以返回 24
示例 2:
输入: root = [1]
输出: 0

在遍历时使用isLeft的bool变量标示当前节点是否是上一个状态的左节点,在确认叶子节点值时同时需要确保该bool变量为true,其余均为遍历框架。代码如下:

class Solution {
private:int traverse(TreeNode* root, bool isLeft) {if (root == nullptr) return 0;if (!root->left && !root->right && isLeft) {return root->val;}int left = traverse(root->left, true);int right = traverse(root->right, false);return left + right;}public:int sumOfLeftLeaves(TreeNode* root) {return traverse(root, false);}
};

同理可以使用迭代法,通过确认左节点的方式:若左节点不为nullptr且为叶子节点,则记录结果,除此之外的所有都不算左叶子。代码如下:

class Solution {
public:int sumOfLeftLeaves(TreeNode* root) {if (root == nullptr) return 0;stack<TreeNode*> stk;stk.push(root);int res = 0;while (!stk.empty()) {TreeNode* cur = stk.top(); stk.pop();// 若左节点不为nullptr且为叶子节点if (cur->left && !cur->left->left && !cur->left->right) {res += cur->left->val;}if (cur->left) stk.push(cur->left);if (cur->right) stk.push(cur->right);}return res;}
};

222.完全二叉树的节点个数

题目描述:

给你一棵 完全二叉树 的根节点 root ,求出该树的节点个数。
完全二叉树 的定义如下:在完全二叉树中,除了最底层节点可能没填满外,其余每层节点数都达到最大值,并且最下面一层的节点都集中在该层最左边的若干位置。若最底层为第 h 层,则该层包含 1 1 1~ 2 h 2^h 2h 个节点。
示例 1:
在这里插入图片描述
输入:root = [1,2,3,4,5,6]
输出:6
示例 2:
输入:root = []
输出:0
示例 3:
输入:root = [1]
输出:1

最简单的二叉树遍历计算节点数,这里使用层序遍历实现:

class Solution {
public:int countNodes(TreeNode* root) {if (root == nullptr) return 0;queue<TreeNode*> q;int res = 0;q.push(root);while (!q.empty()) {int size = q.size();res += size;while (size--) {TreeNode* cur = q.front(); q.pop();if (cur->left) q.push(cur->left);if (cur->right) q.push(cur->right);}}return res;}
};

由于题中所给为完全二叉树,可以根据其特性进行优化:完全二叉树的高度可以通过一直向左直到叶子节点确定、完全二叉树的节点树可以通过比较左右子树的高度来判断。
若左子树高度等于右子树,根据完全二叉树的性质可知左子树为满二叉树(完全二叉树的叶子节点从最左边开始,右子树高度相同则表示左边排满了);若高度不同相反则表示左子树不满,而右子树一定是高度小一行的满二叉树。代码如下:

class Solution {
private:int getHeight(TreeNode* node) {int res = 0;while (node) {++res;node = node->left;}return res;}public:int countNodes(TreeNode* root) {if (root == nullptr) return 0;int leftHeight = getHeight(root->left);int rightHeight = getHeight(root->right);if (leftHeight == rightHeight) {return (1 << leftHeight) + countNodes(root->right);} else {return (1 << rightHeight) + countNodes(root->left);}}
};
http://www.yayakq.cn/news/570786/

相关文章:

  • 国外门户网站有哪些合肥做网站工作室
  • 产品发布网站项目外包app
  • 城市联盟网站怎么做网站短信验证怎么做的
  • 网站制作计划房地产最新消息
  • wordpress级简主题安卓优化大师官网下载
  • 东莞品牌网站建设兰州专业网站建设公司哪家好
  • 网站推广优化排名公司网站开发需要注意的
  • 阆中 网站建设江门住房与城乡建设局官方网站
  • 网站关键词优化应该怎么做wordpress商城推广插件
  • 没有域名怎么访问网站程序开发公司名大全
  • 邯郸网站设计招聘网络营销的主要推广方式
  • 网站手机版怎么做的无锡网站制作企业
  • 诚信通与网站建设区别wordpress+下载站
  • 门户网站平台建设情况河南省招标投标信息网官网
  • 织梦可以做大型网站吗新网站为什么做的这么难
  • 温州网站搭建电商平台网站设计公司
  • 怎么用dw设计网站页面宝安做小程序有推荐吗
  • 网络推广和网站推广长治个人网站建设
  • 网站建立企业怎么注册自己的网站域名
  • 官方网站下载安装云支付html5静态网页制作
  • 做翻页电子书的网站做视频在哪个网站找素材
  • m域名网站安全吗jq网站模板
  • 西安网站建设l西安搜推宝网络广州代理注册公司
  • 怎么做网页制作网站模板怎么查询网站建设时间
  • 怎样在文章后做网站链接wordpress采集插件怎么用
  • 能自己做网站吗网站后台网址在哪输入
  • 企业网站seo参考文献还有什么网站可以做面包车拉货
  • 云南酒店网站建设做网站站怎么赚钱吗
  • 网站上传文件代码wordpress采集翻译插件
  • 织梦能做视频网站吗单页面网站做百度推广