当前位置: 首页 > news >正文

南宁h5建站培训机构跑路怎么追回学费

南宁h5建站,培训机构跑路怎么追回学费,包装设计接单网站,常德百姓网Opencv图像处理 图像阈值处理 图像阈值的处理通过cv2.threshold函数来进行处理,该函数的具体说明如下所示 ret, dst cv2.threshold(src, thresh, maxval, type) src: 输入图,只能输入单通道图像,通常来说为灰度图 dst&#x…

Opencv图像处理

图像阈值处理

图像阈值的处理通过cv2.threshold函数来进行处理,该函数的具体说明如下所示

ret, dst = cv2.threshold(src, thresh, maxval, type)

  • src: 输入图,只能输入单通道图像,通常来说为灰度图

  • dst: 输出图

  • thresh: 阈值

  • maxval: 当像素值超过了阈值(或者小于阈值,根据type来决定),所赋予的值

  • type:二值化操作的类型,包含以下5种类型: cv2.THRESH_BINARY; cv2.THRESH_BINARY_INV; cv2.THRESH_TRUNC; cv2.THRESH_TOZERO;cv2.THRESH_TOZERO_INV

cv2.THRESH_BINARY 超过阈值部分取maxval(最大值),否则取0
cv2.THRESH_BINARY_INV THRESH_BINARY的反转
cv2.THRESH_TRUNC 大于阈值部分设为阈值,否则不变
cv2.THRESH_TOZERO 大于阈值部分不改变,否则设为0
cv2.THRESH_TOZERO_INV THRESH_TOZERO的反转

  1. 读取图像信息并将其转化为灰度图
import cv2 #opencv读取的格式是BGR
import numpy as np
import matplotlib.pyplot as plt#Matplotlib是RGB
%matplotlib inline 
def showimg(name,img):cv2.imshow(name,img)cv2.waitKey(0)cv2.destroyAllWindows()
img_dog = cv2.imread('./res/dog.jpg')
# 转化为灰度图
img_gray = cv2.cvtColor(img_dog,cv2.COLOR_BGR2GRAY)
img_gray.shape
showimg("dog",img_gray)

在这里插入图片描述

  1. 测试图像阈值的处理,并在行内绘制经过图像阈值处理之后的图像信息(彩色图像进行处理)
ret, thresh1 = cv2.threshold(img_gray, 127, 255, cv2.THRESH_BINARY)
ret, thresh2 = cv2.threshold(img_gray, 127, 255, cv2.THRESH_BINARY_INV)
ret, thresh3 = cv2.threshold(img_gray, 127, 255, cv2.THRESH_TRUNC)
ret, thresh4 = cv2.threshold(img_gray, 127, 255, cv2.THRESH_TOZERO)
ret, thresh5 = cv2.threshold(img_gray, 127, 255, cv2.THRESH_TOZERO_INV)titles = ['Original Image', 'BINARY', 'BINARY_INV', 'TRUNC', 'TOZERO', 'TOZERO_INV']
images = [img_dog, thresh1, thresh2, thresh3, thresh4, thresh5]
# 绘制出所需的图像信息
for i in range(6):plt.subplot(2, 3, i + 1), plt.imshow(images[i], 'gray')plt.title(titles[i])plt.xticks([]), plt.yticks([])
plt.show()

在这里插入图片描述

图像平滑处理

首先引出图像平滑处理的概念 -> 读入(给出)一张含有多个图像噪音的图片。对图像进行平滑处理可以简单的理解为使用滤波去除图像中噪音的过程

  1. 读入并展示含有噪音的经典图像数据
img_n = cv2.imread('./res/lenaNoise.png')
showimg('noise',img_n)

在这里插入图片描述

滤波可以类比与卷积操作,对图像中的像素值进行处理
使用均值滤波对图像进行处理。

cv2.blur(img, (3, 3))

  • img输入图像
  • (3,3)(5,5)处理的区域大小
# 均值滤波
# 简单的平均卷积操作
blur = cv2.blur(img_n, (3, 3))cv2.imshow('blur', blur)
cv2.waitKey(0)
cv2.destroyAllWindows()

从而可以看出明显的平滑处理的样式

在这里插入图片描述

# 方框滤波
# 基本和均值一样,可以选择归一化(True进行平均 False )
box = cv2.boxFilter(img_n,-1,(3,3), normalize=False)  cv2.imshow('box', box)
cv2.waitKey(0)
cv2.destroyAllWindows()

其他使用较多的方式包括了均值滤波和高斯滤波等一些常规的方法

# 高斯滤波
# 高斯模糊的卷积核里的数值是满足高斯分布,相当于更重视中间的
aussian = cv2.GaussianBlur(img_n, (5, 5), 1)  cv2.imshow('aussian', aussian)
cv2.waitKey(0)
cv2.destroyAllWindows()
#%%
# 中值滤波
# 相当于用中值代替
median = cv2.medianBlur(img_n, 5)  # 中值滤波cv2.imshow('median', median)
cv2.waitKey(0)
cv2.destroyAllWindows()

所有的平滑处理结果进行展示

# 展示所有的
res = np.hstack((blur,aussian,median))
#print (res)
cv2.imshow('median vs average', res)
cv2.waitKey(0)
cv2.destroyAllWindows()

在这里插入图片描述

图像形态学操作

图像的形态学操作大多处理的是黑白背景的图片

图像的腐蚀操作 :(即设置迭代的次数和操作的大小)对白色的边缘区域来进行进一步的处理。

在这里插入图片描述

dige = cv2.imread('./res/dige.png')cv2.imshow('img', dige)
cv2.waitKey(0)
cv2.destroyAllWindows()

cv2.erode(dige,kernel,iterations = 2)

  • 图像
  • 操作大小
  • 迭代次数
kernel = np.ones((3,3),np.uint8) 
erosion = cv2.erode(dige,kernel,iterations = 2)cv2.imshow('erosion', erosion)
cv2.waitKey(0)
cv2.destroyAllWindows()

在这里插入图片描述

腐蚀操作的一个逆操作可以看作是一个膨胀操作。(使得白色的区域变大)

在执行腐蚀完成之后白色的小区域虽然去掉了,但是线条的大小变小,因此需要使用膨胀操作

cv2.dilate(erosion,kernel,iterations = 1)

  • erosion经过腐蚀操作之后的图像。
kernel = np.ones((3,3),np.uint8) 
dige_dilate = cv2.dilate(erosion,kernel,iterations = 1)cv2.imshow('dilate', dige_dilate)
cv2.waitKey(0)
cv2.destroyAllWindows()

在这里插入图片描述
完成膨胀操作进行扩充线条的粗细。

开运算与闭运算

开运算(cv2.MORPH_OPEN):先腐蚀,再膨胀 闭运算(cv2.MORPH_CLOSE):先膨胀,再腐蚀

本质就是一个综合进行处理的过程信息。cv2.morphologyEx()

# 开:先腐蚀,再膨胀
img = cv2.imread('dige.png')kernel = np.ones((5,5),np.uint8) 
opening = cv2.morphologyEx(img, cv2.MORPH_OPEN, kernel)cv2.imshow('opening', opening)
cv2.waitKey(0)
cv2.destroyAllWindows()
# 闭:先膨胀,再腐蚀
img = cv2.imread('dige.png')kernel = np.ones((5,5),np.uint8) 
closing = cv2.morphologyEx(img, cv2.MORPH_CLOSE, kernel)cv2.imshow('closing', closing)
cv2.waitKey(0)
cv2.destroyAllWindows()

梯度运算

梯度(cv2.MORPH_GRADIENT)=膨胀-腐蚀:简单理解是梯度运算是用来筛选图片的边界区域的。

  1. 水平连接经过膨胀和腐蚀的两个区域。
    res = np.hstack((dilate,erosion))
# 梯度=膨胀-腐蚀
pie = cv2.imread('./res/pie.png')
kernel = np.ones((7,7),np.uint8) 
dilate = cv2.dilate(pie,kernel,iterations = 5)
erosion = cv2.erode(pie,kernel,iterations = 5)res = np.hstack((dilate,erosion))cv2.imshow('res', res)
cv2.waitKey(0)
cv2.destroyAllWindows()

在这里插入图片描述

  1. 执行梯度运算来进行筛选。
gradient = cv2.morphologyEx(pie, cv2.MORPH_GRADIENT, kernel)cv2.imshow('gradient', gradient)
cv2.waitKey(0)
cv2.destroyAllWindows()

在这里插入图片描述

http://www.yayakq.cn/news/783513/

相关文章:

  • 自己建设企业网站建站网站赚钱吗
  • 东莞做网站企业铭平面设计面试作品集
  • 企业标准建站wordpress博客分享
  • php mysql 网站建设网站利用微信拉取用户做登录页
  • 医疗保健网站前置审批文件网站建设合同协议
  • 网页标准化对网站开发维护的好处黄南州wap网站建设公司
  • 找人做网站域名怎么过户icp备案网站建设方案书
  • 第一环保网站建设项目环评公示服务器有了怎么做网站
  • 建设彩票网站合法吗id 连续 wordpress
  • 长沙城乡建设网站中国十大搜索引擎排名最新
  • 右翼网站网站后台登陆密码
  • 大连网站建设微信群平台推广销售话术
  • 个人怎么样做网站如何有效推广
  • seo整站优化价格动画制作大师
  • 网站架构设计师求职信wordpress sora 公开版
  • 网站开发岗位思维导图国内搜索引擎网站
  • 河南省城乡与住房建设厅网站首页马卡龙网站建设方案
  • 深圳外贸网站设计浏览器正能量网站
  • 权威的顺德网站建设网站管理后台怎么做
  • 手机笑话网站模板wordpress如何按更新排序
  • 湖南网站建设的公司排名wordpress熊掌号自动提交
  • 便宜购物网站大全wordpress标题关键词
  • nanopi neo做网站公关策划书模板范文
  • 企业网站相关案例昆明做网站建设找谁
  • 福田网站建设深圳信科网页设计免费网站推荐
  • 要制作自己的网站需要什么wordpress改雅黑
  • 马鞍山建设网站做淘口令的网站
  • 网站建设维护员是做什么的门户网站建设 总结
  • 上网建站凡科快图可以商用吗
  • 做课内教学网站手机兼职软件推荐app