当前位置: 首页 > news >正文

婚庆公司网站php源码才艺多网站建设

婚庆公司网站php源码,才艺多网站建设,如何电话推销客户做网站,google属于搜索引擎类网站.1.原理 AdaBoost是Adaptive Boosting(自适应增强)的缩写,它的自适应在于:被前一个基本分类器误分类的样本的权值会增大,而正确分类的样本的权值会减小,并再次用来训练下一个基本分类器。同时,在…

1.原理

AdaBoost是Adaptive Boosting(自适应增强)的缩写,它的自适应在于:被前一个基本分类器误分类的样本的权值会增大,而正确分类的样本的权值会减小,并再次用来训练下一个基本分类器。同时,在每一轮迭代中,加入一个新的弱分类器,直到达到某个预定的足够小的错误率或预先指定的最大迭代次数再确定最后的强分类器。

1.算法步骤

首先,是初始化训练数据的权值分布D1。假设有N个训练样本数据,则每一个训练样本最开始时,都会被赋予相同的权值:w1 = 1/N。
训练弱分类器Ci。具体训练过程:如果某个训练样本点,被弱分类器Ci准确地分类,那么再构造下一个训练集中,它对应的权值要减小;相反,如果某个训练样本点被错误分类,那么它的权值就应该增大。权值的更新过的样本被用于训练下一个弱分类器,整个过程如此迭代下去。

最后,将各个训练得到的弱分类器组合成一个强分类器。各个弱分类器的训练过程结束后,加大分类误差率小的弱分类器的权重,使其在最终的分类函数中起着较大的决定作用,而降低分类误差率大的弱分类器的权重,使其在最终的分类函数中起着较小的决定作用。
换而言之,误差率低的弱分类器在最终分类器中占的权重较大,否则较小。

2.算法过程

(1).首先,初始化训练集的权值分布。每个训练样本最开始都被赋予相同的权值: w i = 1 N w_{i}=\frac{1}{N} wi=N1这样样本集的权值初始分布为 D 1 ( i ) = ( w 1 , w 2 , ⋯ w N ) = ( 1 N , 1 N , ⋯ 1 N ) D_{1}(i)=(w_{1},w_{2},\cdots w_{N})=\left(\frac{1}{N},\frac{1}{N},\cdots\frac{1}{N}\right) D1(i)=(w1,w2,wN)=(N1,N1,N1)
(2).进行迭代 t = 1 , 2 , ⋯ , T t=1,2,\cdots,T t=1,2,,T

(a).选取一个当前误差率最低的分类器h作为第t个基分类器H_t,并计算弱分类器h_t在训练集上的分类误差率: e t = ∑ i = 1 m w t , i I ( h t ( x i ) ≠ f ( x i ) ) e_{t}=\sum_{i=1}^{m}w_{t,i}I\big(h_{t}(x_{i})\neq f(x_{i})\big) et=i=1mwt,iI(ht(xi)=f(xi))
(b).计算该分类器在最终分类器中所占的权重:
∂ t = 1 2 ln ⁡ 1 − e t e t \partial_t=\frac{1}{2}\ln\frac{1-e_t}{e_t} t=21lnet1et
©.更新样本的权重分布:
D t + 1 = D t e x p ( − ∂ t f ( x ) h t ( x ) ) Z t D_{t+1}=\frac{D_texp(-\partial_tf(x)h_t(x))}{Z_t} Dt+1=ZtDtexp(tf(x)ht(x))
其中: Z t = ∑ i = 1 m w t , i e x p ( − ∂ t f ( x i ) h t ( x i ) ) Z_t=\sum_{i=1}^mw_{t,i}exp\bigl(-\partial_tf(x_i)h_t(x_i)\bigr) Zt=i=1mwt,iexp(tf(xi)ht(xi))

(3).最后按照弱分类器权重\partial_t组成各个弱分类器:
f ( x ) = ∑ i = 1 T ∂ i H i ( x ) \mathrm{f(x)=\sum_{i=1}^T\partial_iH_i(x)} f(x)=i=1TiHi(x)
通过符号函数sign最终得到一个强分类器:
H f i n a l = s i g n ( f ( x ) ) = s i g n ( ∑ i = 1 T ∂ i H i ( x ) ⁡ ) H_{final}=sign\big(\mathrm{f(x)}\big)=sign\bigg(\sum_{\mathrm{i}=1}^{\mathrm{T}}\partial_i\operatorname{H_i(x)}\bigg) Hfinal=sign(f(x))=sign(i=1TiHi(x))

from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split
from sklearn.ensemble import AdaBoostClassifier# 加载鸢尾花数据集
iris = load_iris()
X = iris.data
y = iris.target# 划分训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)# 创建AdaBoost分类器
clf = AdaBoostClassifier(n_estimators=50, learning_rate=1.0)# 训练模型
clf.fit(X_train, y_train)# 预测测试集
y_pred = clf.predict(X_test)# 打印预测结果
print(y_pred)

我们使用了鸢尾花数据集,这是一个常用的多类别分类数据集。我们首先加载数据,然后划分为训练集和测试集。然后,我们创建一个AdaBoost分类器,并使用训练集对其进行训练。最后,我们使用训练好的模型对测试集进行预测,并打印出预测结果。

AdaBoostClassifier的参数n_estimators表示弱学习器的最大数量,learning_rate表示学习率,这两个参数都可以根据需要进行调整。在scikit-learn的AdaBoostClassifier中,默认的弱学习器是一个最大深度为1的决策树桩。你也可以通过base_estimator参数来指定其他类型的弱学习器。

from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split
from sklearn.ensemble import AdaBoostClassifier
from sklearn.naive_bayes import GaussianNB
from sklearn import svm# 加载鸢尾花数据集
iris = load_iris()
X = iris.data
y = iris.target# 划分训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)# 创建朴素贝叶斯分类器作为弱学习器的AdaBoost分类器
clf_nb = AdaBoostClassifier(base_estimator=GaussianNB(), n_estimators=50, learning_rate=1.0)
clf_nb.fit(X_train, y_train)
y_pred_nb = clf_nb.predict(X_test)
print(y_pred_nb)# 创建SVM作为弱学习器的AdaBoost分类器
clf_svm = AdaBoostClassifier(base_estimator=svm.SVC(probability=True, kernel='linear'), n_estimators=50, learning_rate=1.0)
clf_svm.fit(X_train, y_train)
y_pred_svm = clf_svm.predict(X_test)
print(y_pred_svm)

我们首先创建了一个使用朴素贝叶斯分类器作为弱学习器的AdaBoost分类器,然后创建了一个使用SVM作为弱学习器的AdaBoost分类器。注意,对于SVM,我们需要设置probability=True,因为AdaBoost需要使用类别概率。

http://www.yayakq.cn/news/652636/

相关文章:

  • 天津武清网站建设网站备案号申请流程
  • 广东企业移动网站建设哪家好网络管理系统平台有哪些
  • 晋江+网站建设+推广专业制作网站价格
  • wordpress模板 户外钓鱼类网站wordpress 学校
  • 襄阳住房和城乡建设网站注册网址要多少钱
  • 类似qq空间的网站深圳集团网站建设企业
  • 企业建设网站例文wordpress 自定义排序
  • 廊坊购物网站开发设计网站制度建设模板
  • 进一步加强区门户网站建设管理办法张雪峰谈工业设计
  • 邯郸网站建设市场大蒜做营销型网站
  • 潍坊公司网站模板建站模板网站不可以做seo优化吗
  • 西安建立公司网站的步骤海淀
  • 泰州网站制作建设怎么用织梦做自己的网站
  • 便利的广州微网站建设中国有色金属建设协会网站
  • 建站公司专业定制地方门户网站运营
  • 网站如何能吸引用户怎样做微信小程序
  • 企业买好域名后怎么做网站阿里巴巴代加工平台
  • 网站已经克隆好了 怎么做仿站黄页推广币是什么意思
  • 自己做的手机网站怎么加入小程序成品网站源码免费
  • iis7 网站访问权限访问网站 过程
  • 滨州建设局网站网页设计策划案范文
  • 网站建设的主要功能网站建设88
  • wordpress调用所有标签代做seo排名
  • 苏州网站建设网络推广搜索引擎网站推广法 怎么做
  • 北京广告设计公司招聘seo技术培训岳阳
  • 滕州哪里有做网站的如何开发一个视频网站
  • 免费推广网站2022最新设计网站大全
  • 开发微信微网站建设福州网络营销
  • 网站自适应宽度360网站提交
  • 网站语言有几种做么自己做一个网站