当前位置: 首页 > news >正文

海口公司网站建设seo营销怎么做

海口公司网站建设,seo营销怎么做,wordpress手机验证码插件,网站前置审批 查询目录 1. 环境准备 1.1 配置免密登录 2. 下载并配置Spark 3. 配置Spark集群 3.1 配置spark-env.sh 3.2 配置spark-defaults.conf 3.3 设置Master和Worker节点 3.4 设配置log4j.properties 3.5 同步到所有Worker节点 4. 启动Spark Standalone集群 4.1 启动Master节点 …

目录

1. 环境准备

1.1 配置免密登录

2. 下载并配置Spark

3. 配置Spark集群

3.1 配置spark-env.sh

3.2 配置spark-defaults.conf

3.3 设置Master和Worker节点

 3.4 设配置log4j.properties

3.5 同步到所有Worker节点

4. 启动Spark Standalone集群

4.1 启动Master节点

4.2 启动Worker节点

4.3 启动日志服务

5. 测试Spark集群

5.1 提交测试任务

6. 管理Spark集群

6.1 停止Spark集群

7. 常见问题

7.1 防火墙问题

7.2 Java版本不兼容


1. 环境准备

在开始之前,请确保集群中所有节点满足以下要求:

  • 操作系统:建议使用Linux(CentOS或Ubuntu)
  • Java:JDK 1.8或以上版本
  • Python:若使用PySpark,请安装Python 3.6以上版本
  • 网络配置:确保各节点之间的SSH无密码登录已配置

在本教程中,将采用以下的集群结构:

  • Master节点:负责管理资源分配和任务调度
  • Worker节点:实际执行任务

1.1 配置免密登录

在Master节点上配置SSH免密登录,方便自动化管理和任务分发。

ssh-keygen -t rsa # 生成密钥对
ssh-copy-id user@worker1 # 将公钥复制到worker1节点
ssh-copy-id user@worker2 # 将公钥复制到worker2节点

确认免密登录配置成功后,可以继续下一步。

2. 下载并配置Spark

PySpark单机模式安装教程

(按照PySpark单机模式安装教程将其他Work节点也安装Anaconda)

# 解压安装
cd /opt/modules
tar -zxf spark-3.1.2-bin-hadoop3.2.tgz -C /opt/installs
# 重命名
cd /opt/installs
mv spark-3.1.2-bin-hadoop3.2 spark-standalone
# 重新构建软连接
rm -rf spark
ln -s spark-standalone spark

3. 配置Spark集群

3.1 配置spark-env.sh

$SPARK_HOME/conf目录下:

  1. 复制模板文件spark-env.sh.template并重命名为spark-env.sh:

    cd /opt/installs/spark/conf
    mv spark-env.sh.template spark-env.sh
    
  2. spark-env.sh文件中添加以下内容:

    # 22行:申明JVM环境路径以及Hadoop的配置文件路径
    export JAVA_HOME=/opt/installs/jdk
    export HADOOP_CONF_DIR=/opt/installs/hadoop/etc/hadoop
    # 60行左右
    export SPARK_MASTER_HOST=bigdata01 # 主节点所在的地址
    export SPARK_MASTER_PORT=7077 #主节点内部通讯端口,用于接收客户端请求
    export SPARK_MASTER_WEBUI_PORT=8080 #主节点用于供外部提供浏览器web访问的端口
    export SPARK_WORKER_CORES=1     # 指定这个集群总每一个从节点能够使用多少核CPU
    export SPARK_WORKER_MEMORY=1g   #指定这个集群总每一个从节点能够使用多少内存
    export SPARK_WORKER_PORT=7078
    export SPARK_WORKER_WEBUI_PORT=8081
    export SPARK_DAEMON_MEMORY=1g  # 进程自己本身使用的内存
    export SPARK_HISTORY_OPTS="-Dspark.history.fs.logDirectory=hdfs://bigdata01:9820/spark/eventLogs/ -Dspark.history.fs.cleaner.enabled=true"
    # Spark中提供了一个类似于jobHistoryServer的进程,就叫做HistoryServer, 用于查看所有运行过的spark程序
  3. 在HDFS上创建程序日志存储目录(首先如果没有启动hdfs,需要启动一下)

    # 第一台机器启动HDFS
    start-dfs.sh
    # 创建程序运行日志的存储目录
    hdfs dfs -mkdir -p /spark/eventLogs/

3.2 配置spark-defaults.conf

 在$SPARK_HOME/conf目录下:

  1. 复制模板文件spark-defaults.conf并重命名为spark-defaults.conf:

    mv spark-defaults.conf.template spark-defaults.conf
    vim spark-defaults.conf
  2. spark-env.sh文件中添加以下内容:

    # 末尾
    spark.eventLog.enabled           true
    spark.eventLog.dir              hdfs://bigdata01:9820/spark/eventLogs
    spark.eventLog.compress              true

3.3 设置Master和Worker节点

$SPARK_HOME/conf目录下:

  1. 复制模板文件workers.template并重命名为workers

    mv workers.template workers
  2. workers文件中添加所有Worker节点的IP或主机名,例如:

    # 删掉localhost,添加以下内容
    bigdata01
    bigdata02
    bigdata03

 3.4 设配置log4j.properties

$SPARK_HOME/conf目录下:

  1. 复制模板文件log4j.properties.template并重命名为log4j.properties:

    mv log4j.properties.template log4j.properties
  2. 在log4j.properties文件中添修改以下内容:

    # 19行:修改日志级别为WARN
    log4j.rootCategory=WARN, consolelog4j的5种 级别  debug --> info --> warn --error -->fatal

3.5 同步到所有Worker节点

将Master的spark同步到其他Worker节点

scp $SPARK_HOME user@worker1:$SPARK_HOME
scp $SPARK_HOME user@worker2:$SPARK_HOME

(也可以使用文件分发脚本xsync.sh将整个spark文件同步给其他节点)

同时,在其他节点创建软链接(命令同步执行脚本xcall.sh):

cd /opt/installs/
ln -s spark-standalone spark换个思路,是否可以同步软链接:
xsync.sh /opt/installs/spark

4. 启动Spark Standalone集群

4.1 启动Master节点

在Master节点上执行以下命令启动Master服务:

# 启动master:
cd /opt/installs/spark
sbin/start-master.sh

Master启动成功后,可以在http://<Master_IP>:8080查看集群的Web UI(8080为默认端口)。

4.2 启动Worker节点

在Master节点上,通过以下命令启动所有Worker节点:

# 启动所有worker:
sbin/start-workers.sh
# 如果你想启动某一个worker
sbin/start-worker.sh

4.3 启动日志服务

在Master节点上,通过以下命令启动日志服务:

# 启动日志服务:
sbin/start-history-server.sh

5. 测试Spark集群

5.1 提交测试任务

可以通过以下命令提交一个简单的Spark任务来测试集群是否配置成功:

$SPARK_HOME/bin/spark-submit --master spark://<Master_IP>:7077 \ --class org.apache.spark.examples.SparkPi \ $SPARK_HOME/examples/jars/spark-examples*.jar 10

运行后,观察任务的运行结果,若无错误信息,说明集群部署成功。

6. 管理Spark集群

6.1 停止Spark集群

可以在Master节点上执行以下命令停止集群:

$SPARK_HOME/sbin/stop-all.sh# 要想关闭某个服务,将start换为stop

也可以分别在Master和Worker节点上使用stop-master.shstop-worker.sh命令来单独停止服务。

7. 常见问题

7.1 防火墙问题

如果无法访问Web UI,请检查是否需要开放8080端口,或使用防火墙命令允许通信:

# 防火墙状态命令:
systemctl status firewalld
# 关闭防火墙命令:
systemctl stop firewalld(重启后防火墙还是会自动开启)
# 开启防火墙命令:
systemctl  start firewalld
# 重启防火墙命令:
systemctl  restart firewalld
# 开机启动防火墙命令:
systemctl enable firewalld
# 开机不启动防火墙命令:
systemctl disable firewalld

7.2 Java版本不兼容

确保所有节点上的Java版本一致,以避免运行时出现兼容性问题。


至此,您已成功部署了Spark Standalone集群,并验证了基本的任务提交。Standalone集群适用于中小规模数据处理需求,便于简单、高效地管理Spark资源。

http://www.yayakq.cn/news/376275/

相关文章:

  • asp.net网站安装顺序非遗文化网站建设
  • 排行榜哪个网站最好简单网页编辑软件
  • 自己建立的网站做网站开创和中企动力哪家强
  • 如何优化网站tkd网页设计代码html分行
  • 网站vi设计公司wordpress出现不能登录
  • 厦门市建设局网站文件软件公司需要的资质和认证
  • 电子商务与网站建设的发展综述网站设计建设步骤
  • 做外贸自己的公司网站域名备案管理系统查询
  • 广西网站建设timkee东莞信科网站建设
  • 什么网站做网页好网站建设的重点是什么
  • 网站流量怎么挣钱口罩的价格
  • 可以跟关键词密度过高的网站交换友情链接吗浙江职业能力建设网
  • 这几年做哪些网站能致富河南省建设工程招标投标信息网
  • 郑州做网站哪家公司好wordpress伪静态cdn配置
  • 网站不备案 能打开吗网站关键词密度太高怎么处理
  • 江苏10大网站建设公司鲨鱼座 网站建设
  • 新西兰网站开发专业有没有做那事的网站
  • 网站建设中常用的技术有哪些wordpress文章目录页
  • 一个公司做网站需要注意什么条件网络服务者
  • 适合毕设做的简单网站一站式服务门户
  • 在线教育自助网站建设平台如何给网站做证书
  • 官网建设公司前十seo技术网网
  • 广饶网站定制网站优化的主要任务
  • 淄博网站推广哪家好云服务器怎么架设网站
  • 全国中高风险地区最新名单惠州百度seo哪家好
  • 培训网站建设方案模板下载购物网站开发方案
  • 网站备案电话号码wordpress主题制作教程
  • 外贸做网站的好处下班后做兼职任务网站
  • 创建网站忘记了怎么办百度公司网站制作
  • 如何在网站上做支付功能网站托管工作室