当前位置: 首页 > news >正文

免费的源码分享网站全屋定制app量尺寸的软件

免费的源码分享网站,全屋定制app量尺寸的软件,wordpress 主题 单栏,诚信通国际网站怎么做目录 一、前言 二、Top-k问题 💦解法一:暴力排序 💦解法二:建立N个数的堆 💦解法三:建立K个数的堆(最优解) 三、完整代码和视图 四、共勉 一、前言 在之前的文章中&#xff…

目录

一、前言

二、Top-k问题 

 💦解法一:暴力排序

💦解法二:建立N个数的堆

💦解法三:建立K个数的堆(最优解)

三、完整代码和视图 

四、共勉


一、前言

在之前的文章中,已经详细的讲解了二叉树、堆、堆排序。那么关于堆还有一个比较有意思的题,就是TopK问题。

如果对堆和二叉树还不够了解的可以看看我之前的文章哦!!!

详解二叉树和堆

二、Top-k问题 

Top-k问题:在 N 个数中,找出前 K 个(最大/最小)的元素,一般情况下数据量 N 都远大于 k。

Top-k问题在生活中是非常的常见,比如游戏中某个大区某个英雄熟练度最高的前10个玩家的排名,我们就要根据每个玩家对该英雄的熟练度进行排序,可能有200万个玩家,但我只想选出前10个,要对所有人去排个序吗?显然没这个必要。

再比如:专业前10名、世界500强、富豪榜、游戏中前100的活跃玩家等。

 💦解法一:暴力排序

对于Top-K问题,首先想到的最简单直接的方式就是排序。

我们用堆排序,其时间复杂度为:O(N*log2N)。

但是:如果数据量非常大,排序就不太可取了(可能数据都不能一下子全部加载到内存中)。


💦解法二:建立N个数的堆

建一个 N 个数的堆(C++中可用优先级队列priority_queue),不断的选数,选出前 k 个。

时间复杂度:建N个数的堆为O(N),获取堆顶元素 (也即是最值) 并删除掉堆顶元素为O(log2N),上述操作重复 k 次,所以时间复杂度为O(N+k*log2N)。

【思考】

能否再优化一下呢?假设 N 是 10 亿数,内存中放不下,是放在文件中的。前面两个方法都不能用了。


💦解法三:建立K个数的堆(最优解)

✨基本思想:

用数据集合中前K个元素来建堆。

找前 k 个最大的元素,则建小堆

找前 k 个最小的元素,则建大堆

用剩余的 N-K 个元素依次与堆顶元素来比较,不满足则删除堆顶元素,再插入。

找前 k 个最大的元素,大于堆顶元素,则删除堆顶元素,再插入

找前 k 个最小的元素,小于堆顶元素,则删除堆顶元素,再插入

将剩余的 N-K 个元素依次与堆顶元素比完之后,堆中剩余的K个元素就是所求的前K个最小或者最大的元素。


✨时间复杂度:

▶ 建 k 个元素的堆为O(K);
▶ 遍历剩余的 N-K 个元素的时间代价为O(N-K),假设运气很差,每次遍历都入堆调整;
▶ 入堆调整:删除堆顶元素和插入元素都为O(log2K);
▶ 所以时间复杂度为O(k + (N-K)log2K)。当 N 远大于 K 时,为O(N*log2K),这种解法更优。

 

✨假如要找出最大的前 10 个数

▶ 建立 10 个元素的小堆,数据集合中前 10 个元素依次放入小堆,此时的堆顶元素是堆中最小的元素,也是堆里面第 10 个最小的元素,
▶  然后把数据集合中剩下的元素与堆顶比较,若大于堆顶则去掉堆顶,再将其插入,
▶  这样一来,堆里面存放的就是数据集合中的前 10 个最大元素,
此时小堆的堆顶元素也就是堆中的第 10 个最大的元素

 

✨思考:为什么找出最大的前10个数,不能建大堆呢?

如果你建的10个元素的大堆,堆顶元素恰好是数据集合中最大的那个,那第2大的数、第3大的数不就能找不到了。

三、完整代码和视图 

以从1w个数里找出最大的前10个数为例:

#include <stdio.h>
#include <stdlib.h>
#include <assert.h>
#include <stdbool.h>typedef int HPDatatype;
void Swap(HPDatatype* x, HPDatatype* y)
{HPDatatype temp = 0;temp = *x;*x = *y;*y = temp;
}void AdjustDown(HPDatatype* a,int n,int parent)
{// 左孩子int child = parent * 2 + 1;// 防止越界while (child < n){//小堆if (child + 1 < n && a[child] > a[child + 1]){child++;}// 开始向下调整if (a[child] < a[parent]){Swap(&a[child], &a[parent]);parent = child;child = parent * 2 + 1;}else{break;}}
}void TopK(HPDatatype* a, int n, int k)
{HPDatatype* kminHeap = (HPDatatype*)malloc(sizeof(HPDatatype) * k);assert(kminHeap);// 1. 建堆----用a中前k个元素建堆for (int i = 0; i < k; i++){kminHeap[i] = a[i];}// 建小堆for (int j = ((n - 1) - 1) / 2; j >= 0; j--){// 从倒数第一个非叶子节点开始AdjustDown(kminHeap, k, j);}// 2. 将剩余n-k个元素依次与堆顶的元素交换,比堆顶大,交换for (int i = k; i < n; i++){if (a[i] > kminHeap[0]){kminHeap[0] = a[i];//如果比堆顶大,就替换AdjustDown(kminHeap, k, 0);//向下调整确保为堆}}for (int j = 0; j < k; j++){printf("%d ", kminHeap[j]);}printf("\n");free(kminHeap);
}int main()
{int n = 10000;int* a = (int*)malloc(sizeof(int) * n);srand(time(0));for (int i = 0; i < n; ++i){a[i] = rand() % 1000000; //产生一个随机数,数值均小于100万}a[5] = 1000000 + 1;a[1231] = 1000000 + 2;a[531] = 1000000 + 3;a[5121] = 1000000 + 4;a[115] = 1000000 + 5;a[2335] = 1000000 + 6;a[9999] = 1000000 + 7;a[76] = 1000000 + 8;a[423] = 1000000 + 9;a[3144] = 1000000 + 10;TopK(a, n, 10);return 0;
}

四、共勉

 以下就是我对数据结构---堆排序的理解,如果有不懂和发现问题的小伙伴,请在评论区说出来哦,同时我还会继续更新对数据结构-------链式二叉树请持续关注我哦!!!!

http://www.yayakq.cn/news/957199/

相关文章:

  • 碧江网站建设推广公司兴田德润活动
  • linux主机做网站中英文微信网站建设
  • 地铁工程建设论文投稿网站WordPress数据库切割
  • 简述网站建设基本过程深圳网络推广收费标准
  • 网站建设公司哪家好要选磐石网络wordpress 主题设置中文版
  • 怎么制作小视频西安seo服务商
  • 网站生成app免费wordpress 加速乐
  • 网站做适配手机要多久网站平台建设十大公司
  • 汉中 网站建设京东代运营
  • 建站类平台排行榜怎么做图片网站
  • 开网站建设公司心得wordpress默认安装目录
  • 没有网站可以做cpc吗找工作网
  • 强大的网站设计制作允许发外链的网站
  • 最好记得网站域名个人网站建站申请
  • 鞍山 网站建设网站建设论文总结
  • 百度推广做网站定安网站制作
  • 网站备案 法人wps的ppt做网站超链接
  • 网站总体规划设计说明怎么做营销型网站
  • 制作网站需要的技术洛阳凯锦腾网业有限公司
  • 网站使用的数据库主要有哪些内部网站建设软件
  • 建站行业最新消息哪些网站是用wordpress
  • 做海报找素材网站春雨直播视频观看完整版
  • 苏州住房建设建局官方网站设计师网站十大网站推荐
  • 关键词上首页软件网站推广优化招聘
  • 寻网站开发人员合作网站开发与维护书
  • 学校校园网站建设运动类网站
  • 做网站公司名字推荐湖南做网站 要上磐石网络
  • 东莞大岭山天气杭州网站排名优化
  • 郑州网站优化公司平台网站html设置首页
  • 网络公司 给 客户网站备案王也天葛优