当前位置: 首页 > news >正文

3d设计公司企业网站优化兴田德润优惠

3d设计公司,企业网站优化兴田德润优惠,ios开发用什么软件,做58网站怎么赚钱吗诸神缄默不语-个人CSDN博文目录 诸神缄默不语的论文阅读笔记和分类 论文全名:Toolformer: Language Models Can Teach Themselves to Use Tools 论文下载地址:https://arxiv.org/abs/2302.04761 这篇文章是介绍tool learning的,大概来说就是…

诸神缄默不语-个人CSDN博文目录
诸神缄默不语的论文阅读笔记和分类

论文全名:Toolformer: Language Models Can Teach Themselves to Use Tools
论文下载地址:https://arxiv.org/abs/2302.04761

这篇文章是介绍tool learning的,大概来说就是训练模型实现这个功能:根据query判断是否需要通过调用工具(传参进API)来获取一些特定信息(比如天气、实时汇率等,还有计算器、问答系统、搜索引擎、翻译系统、日历)。结合工具返回的结果,LLM输出最终结果。
这种做法在现在LLM里用的也蛮多的了,现在应该已经可以实现在一句话里多次调用、链式调用API了?(虽然据说可能会出现死锁,所以必须要DAG捏)

在这里插入图片描述

很多细节懒得写了,大家看原文吧。

文章目录

  • 1. 思路
  • 2. Toolformer
    • 用字符串表示一个API调用
    • API
  • 3. 实验
    • 1. 数据集构建
    • 2. 主实验结果
    • 3. 模型分析
      • 1. Scaling Laws
      • 2. 解码策略
      • 3. 数据质量

1. 思路

Toolformer主要致力于解决一些LLM反而解决不了的基础问题(比如算术,比如获取最新信息(LLM缺失最新信息也使其倾向于产生幻觉,这块我的理解是这就是很直觉的因为LLM不知道所以就瞎编)),解决方案就是让LLM去调用外部工具。
现存的解决方案要么需要人工标注1,要么外部工具类型单一2 3,而Toolformer就可以实现:

  • 自监督学习使用工具,不需要大规模人工标注。
  • 工具可选范围广泛

2. Toolformer

训练过程实现方法:

  1. 用LLM自监督标注出API调用训练集(可以视为是bootstrapping方法)
    大致来说就是根据query抽样API调用位置和命令,执行命令,从返回的结果中选出不会降低接下来token的语言模型损失函数的样本中损失函数最低的样本。
    (设计评估API的损失函数这里有很多太细节的东西我就懒得写了,总之这里有一点比较tricky就是拿API召回结果当前缀……)
    最后将返回结果嵌入LLM回答中。

    以QA工具为例,抽样时采用的prompt模版(全部模版见Appendix A.2):
    在这里插入图片描述

    整体流程:
    在这里插入图片描述
  2. 微调LLM

推理过程:在出现token时调用API

用字符串表示一个API调用

一个API调用是一个元组 c = ( a c , i c ) c=(a_c,i_c) c=(ac,ic) a c a_c ac是API名称(函数), i c i_c ic是API输入(参数)。
r r r是API返回结果,我们定义序列化的API调用(指用字符串表示的一个API调用),带不带返回结果的如下两种情况:
在这里插入图片描述
<API></API>→是特殊字符,在实际实验中用词表中存在的token[]->来替代,如Figure 1所示:
在这里插入图片描述

API

具体选了哪些API之类的,我懒得写了。总之在这里粘一下正文图表:

API及其输入输出示例:
在这里插入图片描述

3. 实验

1. 数据集构建

↓ 这个是调用API的位置和“调用API有用”的位置之间的threshold和API量,就是权重低于这个阈值才会选择调用(把这个样本放进数据集)。threshold是API-specific的。细节见原文及Appendix A。
在这里插入图片描述

2. 主实验结果

LAMA:评估标准略,总之LM是应用于left-to-right模式,以及对多token场景评估准确率用的不是完全匹配。
在这里插入图片描述

求解数学题:用模型生成的结果中的第一个数字
在这里插入图片描述

QA:(本文提及希望与搜索内容互动。啊这个思路感觉很多新模型已经实现了……)
在这里插入图片描述

跨语言QA:
在这里插入图片描述

带时间信息的数据集:
在这里插入图片描述

LM:
在这里插入图片描述

3. 模型分析

1. Scaling Laws

用GPT-2系列来分析模型具不具有scaling laws:
在这里插入图片描述

2. 解码策略

top-k里的那个k:
在这里插入图片描述

3. 数据质量

检验API返回结果的有效性:
在这里插入图片描述


  1. (2022 ACL) Internet-Augmented Dialogue Generation
    (2022 谷歌) Re69:读论文 LaMDA: Language Models for Dialog Applications ↩︎

  2. PAL: Program-aided Language Models ↩︎

  3. TALM: Tool Augmented Language Models
    Internet-augmented language models through few-shot prompting for open-domain question answering ↩︎

http://www.yayakq.cn/news/242143/

相关文章:

  • 外包网站制作多少钱网站建设企业站有哪些要求
  • 网站开发的理解做网站电子版报价模板
  • 单页网站产品做哈尔滨本地门户网站赚钱吗
  • 免费免费建站wordpress中文包
  • 智能建站公司上海做家庭影院的公司网站
  • 深圳网站 制作信科便宜国外网站 dns
  • html做的宠物网站网站域名查主机
  • 在京东上怎样做网站wordpress+移动客户端
  • 全国分站seo佛山新网站制作咨询
  • 制作公司网站用阿里云学校网站建设分工
  • 做网站资源存储网络营销logo
  • vue php 哪个做网站 好上网建立网站布置
  • 东莞市网站推广wordpress documentation
  • 织梦制作手机网站图片模板 网站源码
  • wordpress设主题商丘seo推广
  • 网站报404错误怎么解决阿里云搭建安装wordpress教程
  • 网站后台的形成建设银行报网站
  • 安徽义信建设网站什么是电子商务专业
  • 网站开发难吗2008网站外包要注意什么
  • 做摄影和后期的兼职网站网站建设的优势是什么意思
  • 100m的网站 数据库手机wordpress后台
  • 网站建设预算表制作摄影图片网站
  • godaddy网站建设买保险网站
  • 网站建设策划有哪些成都到深圳物流公司
  • 北京最好的网站建设百度怎么投广告
  • 建立网站邮箱互联网创业就是做网站吗
  • 珠海网站制作wordpress付费閱讀插件
  • 如何做网站开发镇江网站建设dmooo
  • 视频网站的建设费用小鸟云服务器官网
  • 杭州网站制作方法手机价格