当前位置: 首页 > news >正文

南通营销型网站搭建本地网站环境

南通营销型网站,搭建本地网站环境,商务网站建设实训结论,企业邮箱注册申请免费流程本次实验以AAAI 2014会议论文数据为基础,要求实现或调用无监督聚类算法,了解聚类方法。 任务介绍 每年国际上召开的大大小小学术会议不计其数,发表了非常多的论文。在计算机领域的一些大型学术会议上,一次就可以发表涉及各个方向…

本次实验以AAAI 2014会议论文数据为基础,要求实现或调用无监督聚类算法,了解聚类方法。

任务介绍

每年国际上召开的大大小小学术会议不计其数,发表了非常多的论文。在计算机领域的一些大型学术会议上,一次就可以发表涉及各个方向的几百篇论文。按论文的主题、内容进行聚类,有助于人们高效地查找和获得所需要的论文。本案例数据来源于AAAI 2014上发表的约400篇文章,由UCI公开提供,提供包括标题、作者、关键词、摘要在内的信息,希望大家能根据这些信息,合理地构造特征向量来表示这些论文,并设计实现或调用聚类算法对论文进行聚类。最后也可以对聚类结果进行观察,看每一类都是什么样的论文,是否有一些主题。

基本要求:

  1. 将文本转化为向量,实现或调用无监督聚类算法,对论文聚类,例如10类(可使用已有工具包例如sklearn);

  2. 观察每一类中的论文,调整算法使结果较为合理;

  3. 无监督聚类没有标签,效果较难评价,因此没有硬性指标,跑通即可,主要让大家了解和感受聚类算法,比较简单。

扩展要求:

  1. 对文本向量进行降维,并将聚类结果可视化成散点图。

注:group和topic也不能完全算是标签,因为

  1. 有些文章作者投稿时可能会选择某个group/topic但实际和另外group/topic也相关甚至更相关;

  2. 一篇文章可能有多个group和topic,作为标签会出现有的文章同属多个类别,这里暂不考虑这样的聚类;

  3. group和topic的取值很多,但聚类常常希望指定聚合成出例如5/10/20类;

  4. 感兴趣但同学可以思考利用group和topic信息来量化评价无监督聚类结果,不作要求。

提示:

  1. 高维向量的降维旨在去除一些高相关性的特征维度,保留最有用的信息,用更低维的向量表示高维数据,常用的方法有PCA和t-SNE等;

  2. 降维与聚类是两件不同的事情,聚类实际上在降维前的高维向量和降维后的低维向量上都可以进行,结果也可能截然不同;

  3. 高维向量做聚类,降维可视化后若有同一类的点不在一起,是正常的。在高维空间中它们可能是在一起的,降维后损失了一些信息

实验结果 

from sklearn.feature_extraction.text import  CountVectorizer
from sklearn.metrics import  calinski_harabasz_score
from sklearn.decomposition import PCA
from sklearn.cluster import KMeans
import pandas as pd
import numpy as npdef load_data(path='data/[UCI] AAAI-14 Accepted Papers - Papers.csv'):df_data = pd.read_csv(path)df_data = df_data.dropna()return df_datadf = load_data()
df.describe() 
# 去除不好的特征
df_selected = df.drop(['groups', 'topics'], axis=1)
cv = CountVectorizer()
X_features = np.array([[i] for i in range(df.shape[0])])for col in df_selected.columns:tmp = cv.fit_transform(df_selected[col].tolist())feature = tmp.toarray()X_features = np.concatenate((X_features, feature), axis=1)print("特征矩阵的形状:", X_features.shape)

 特征矩阵的形状: (392, 9899)

# 取出group和topics特征作为评价指标
df_cls = df[['groups', 'topics']]
cv = CountVectorizer()
X_cls = [[i] for i in range(df.shape[0])]
for col in df_cls.columns:tmp = cv.fit_transform(df_cls[col])feature = tmp.toarray()X_cls = np.concatenate((X_cls, feature), axis=1)

SSE(Sum of Squared Errors)测量聚类结果中每个样品与所属聚类中心距离的平方和。SSE越小,聚类样品越致密,聚类效果越好。SSE是衡量簇内密度的指标,越小越好。

CH指标(Calinski-HarabaszIndex)是综合考虑集群内密度和集群间分辨率的指标。计算集群间分散度与集群内密度之比。CH指标越大,集群之间的距离越大,集群内的距离越小,集群效果越好。

for pca_num in [2, 5, 7, 10, 30]:X_pca = PCA(n_components=pca_num).fit_transform(X_features)X_cs = PCA(n_components=pca_num).fit_transform(X_cls)print(X_pca.shape)for k in range(5, 16):kmeans = KMeans(n_clusters=k)labels = kmeans.fit_predict(X_pca)# 获取聚类中心centroids = kmeans.cluster_centers_# 计算每个样本与所属簇中心的距离的平方distances = np.sum((X_cs - centroids[labels])**2, axis=1)# 计算 SSEsse = np.sum(distances)# CH指标ch = calinski_harabasz_score(X_cs, labels)score = sse/chprint('k:', k, 'ch:', ch, 'SSE:', sse, 'score:', score)

从结果可以看出降维度在2,k为15的时候聚类效果更好。这里我用了sse和ch的比值作为成绩,越小证明聚类效果越好。 

http://www.yayakq.cn/news/687431/

相关文章:

  • 青岛市做网站优化wordpress postfix
  • 如何使用阿里云服务器建设网站wordpress页脚菜单
  • 网站的标签app平台运营模式
  • 洛阳市建设工程评标专家网站ps做图游戏下载网站
  • 重庆网站制作哪家好厦门商场网站建设
  • 上海网站开发caiyiduo网站设计工具有哪些
  • 怎么做伪静态网站中国建设网建筑通
  • 天津宇昊建设集团有限公司网站网页服务器价格
  • wordpress站点设置使用时间网页制作专业知识
  • 只放一个图片做网站各种资源都有的搜索引擎
  • 湖南做网站磐石网络加速乐wordpress插件
  • WordPress文章多图分页邢台seo一站式
  • 网站首页 如何设置做设计图任务的网站
  • 360网站服务监控昆明网站建设系统有哪些
  • 网站建设php有哪些黄骅市属于沧州吗
  • 58同城网站建设排名手机便宜电商网站建设
  • 网站后台 黑链接做牙网站
  • 做平面设计图的网站wordpress 发布接口
  • 做网站的销售话术营销策划的流程
  • 苏州建网站必去苏州聚尚网络姓氏变logo设计免费生成
  • 网站建设公司有哪些内容做简单网站的框架图
  • 网站建设几大类型苏州公司建设网站制作
  • 网站建设要如何选择猎头公司是干什么的
  • 免费建网站哪个网好网站建设和推广大概需要多少费用
  • 做空压机网站的公司有哪些好看响应式网站模板下载
  • 福建省住房建设厅网站优秀网页设计作品案例欣赏
  • 建设网站用什么好自己做的网站图片打开慢
  • 布吉商城网站建设基本流程企业推广方案
  • 建设短视频网站推广平台哪个效果最好
  • 用divid做网站代码网页加速器浏览器