当前位置: 首页 > news >正文

青岛信息推广网站wordpress安装教程 linux

青岛信息推广网站,wordpress安装教程 linux,seo快速排名源码,开小厂一年赚50万灰色神经网络(Grey Neural Network, GNN) 是将灰色系统理论与人工神经网络相结合的一种模型,旨在处理不完全信息和小样本问题。灰色神经网络利用灰色系统的预测优势和神经网络的学习能力,能够在信息不完整或数据不充分的情况下实现…

灰色神经网络(Grey Neural Network, GNN) 是将灰色系统理论与人工神经网络相结合的一种模型,旨在处理不完全信息和小样本问题。灰色神经网络利用灰色系统的预测优势和神经网络的学习能力,能够在信息不完整或数据不充分的情况下实现较高的预测精度。它广泛应用于工程优化、经济预测和系统建模等领域。


灰色系统理论简介

灰色系统理论是一种专注于不完全信息处理的方法,通过对不完全、不确定性数据进行灰化处理,挖掘数据中的潜在规律。其核心是基于有限的数据建立灰色模型(如 GM(1,1)),通过数据生成和动态建模实现预测。


灰色神经网络的基本原理

灰色神经网络结合了灰色系统理论的建模能力和神经网络的非线性映射能力,主要包括以下几个步骤:

  1. 数据预处理

    • 将原始数据进行灰色生成(如累加生成),使数据序列平滑化,从而增强趋势的识别。
    • 数据归一化处理,将输入数据映射到特定范围(如 [0, 1]),以提高训练效果。
  2. 灰色特征提取

    • 使用灰色模型(如 GM(1,1))提取数据中的趋势特征。
    • 通过分析原始数据的灰色关联度,提取关键的输入变量。
  3. 神经网络建模

    • 将提取的灰色特征作为神经网络的输入。
    • 神经网络通过学习输入与输出之间的映射关系,预测目标值。网络结构通常采用前馈网络,如 BP 神经网络。
  4. 参数优化

    • 采用优化算法(如梯度下降、遗传算法或粒子群优化)调整网络权重,提高模型的预测能力。
    • 灰色神经网络的训练过程同时结合了灰色建模和神经网络优化。

灰色神经网络的结构

灰色神经网络的结构通常包括以下部分:

  1. 输入层
    接收经过灰色处理的特征变量。

  2. 隐含层
    通过神经元对输入特征进行非线性映射,识别复杂的模式和关系。

  3. 输出层
    生成预测结果或分类结果。


灰色神经网络的特点

  1. 小样本建模能力
    适用于样本量较少、数据不完全的情况,能够在信息不足的条件下进行建模和预测。

  2. 兼顾线性和非线性特征
    灰色系统理论提取数据的整体趋势特征,神经网络进一步学习非线性关系,模型具有较强的泛化能力。

  3. 抗噪能力强
    由于灰色生成过程具有数据平滑效果,灰色神经网络对噪声数据具有较好的鲁棒性。

  4. 灵活性高
    灰色神经网络可根据实际需求调整灰色建模和神经网络的结构或参数,从而适应不同应用场景。


应用领域

  1. 经济预测
    在经济数据不充分的情况下,用于预测市场趋势、商品价格等。

  2. 工程优化
    应用于优化复杂工程系统的参数,如电力负荷预测、交通流量预测等。

  3. 医学分析
    预测疾病发展趋势或分析生物医学数据。

  4. 能源管理
    用于预测能源消耗和优化能源分配方案。


总结

灰色神经网络通过融合灰色系统的趋势建模能力和神经网络的非线性映射能力,在小样本、不完全数据情况下提供了强大的预测能力。它兼具理论严谨性和实用性,是一种适合多种复杂场景的混合模型方法。


%% 清空环境变量
clc
clearload data%% 数据累加作为网络输入
[n,m]=size(X);
for i=1:ny(i,1)=sum(X(1:i,1));y(i,2)=sum(X(1:i,2));y(i,3)=sum(X(1:i,3));y(i,4)=sum(X(1:i,4));y(i,5)=sum(X(1:i,5));y(i,6)=sum(X(1:i,6));
end%% 网络参数初始化
a=0.3+rand(1)/4;
b1=0.3+rand(1)/4;
b2=0.3+rand(1)/4;
b3=0.3+rand(1)/4;
b4=0.3+rand(1)/4;
b5=0.3+rand(1)/4;%% 学习速率初始化
u1=0.0015;
u2=0.0015;
u3=0.0015;
u4=0.0015;
u5=0.0015;%% 权值阀值初始化
t=1;
w11=a;
w21=-y(1,1);
w22=2*b1/a;
w23=2*b2/a;
w24=2*b3/a;
w25=2*b4/a;
w26=2*b5/a;
w31=1+exp(-a*t);
w32=1+exp(-a*t);
w33=1+exp(-a*t);
w34=1+exp(-a*t);
w35=1+exp(-a*t);
w36=1+exp(-a*t);
theta=(1+exp(-a*t))*(b1*y(1,2)/a+b2*y(1,3)/a+b3*y(1,4)/a+b4*y(1,5)/a+b5*y(1,6)/a-y(1,1));kk=1;%% 循环迭代
for j=1:10
%循环迭代
E(j)=0;
for i=1:30%% 网络输出计算t=i;LB_b=1/(1+exp(-w11*t));   %LB层输出LC_c1=LB_b*w21;           %LC层输出LC_c2=y(i,2)*LB_b*w22;    %LC层输出LC_c3=y(i,3)*LB_b*w23;    %LC层输出LC_c4=y(i,4)*LB_b*w24;    %LC层输出LC_c5=y(i,5)*LB_b*w25;    %LC层输出LC_c6=y(i,6)*LB_b*w26;    %LC层输出 LD_d=w31*LC_c1+w32*LC_c2+w33*LC_c3+w34*LC_c4+w35*LC_c5+w36*LC_c6;    %LD层输出theta=(1+exp(-w11*t))*(w22*y(i,2)/2+w23*y(i,3)/2+w24*y(i,4)/2+w25*y(i,5)/2+w26*y(i,6)/2-y(1,1));   %阀值ym=LD_d-theta;   %网络输出值yc(i)=ym;%% 权值修正error=ym-y(i,1);      %计算误差E(j)=E(j)+abs(error);    %误差求和       error1=error*(1+exp(-w11*t));     %计算误差error2=error*(1+exp(-w11*t));     %计算误差error3=error*(1+exp(-w11*t));error4=error*(1+exp(-w11*t));error5=error*(1+exp(-w11*t));error6=error*(1+exp(-w11*t));error7=(1/(1+exp(-w11*t)))*(1-1/(1+exp(-w11*t)))*(w21*error1+w22*error2+w23*error3+w24*error4+w25*error5+w26*error6);%修改权值w22=w22-u1*error2*LB_b;w23=w23-u2*error3*LB_b;w24=w24-u3*error4*LB_b;w25=w25-u4*error5*LB_b;w26=w26-u5*error6*LB_b;w11=w11+a*t*error7;
end
end  %画误差随进化次数变化趋势
figure(1)
plot(E)
title('训练误差','fontsize',12);
xlabel('进化次数','fontsize',12);
ylabel('误差','fontsize',12);
%print -dtiff -r600 28-3%根据训出的灰色神经网络进行预测
for i=31:36t=i;LB_b=1/(1+exp(-w11*t));   %LB层输出LC_c1=LB_b*w21;           %LC层输出LC_c2=y(i,2)*LB_b*w22;    %LC层输出LC_c3=y(i,3)*LB_b*w23;    %LC层输出LC_c4=y(i,4)*LB_b*w24;    %LC层输出LC_c5=y(i,5)*LB_b*w25;LC_c6=y(i,6)*LB_b*w26;LD_d=w31*LC_c1+w32*LC_c2+w33*LC_c3+w34*LC_c4+w35*LC_c5+w36*LC_c6;    %LD层输出theta=(1+exp(-w11*t))*(w22*y(i,2)/2+w23*y(i,3)/2+w24*y(i,4)/2+w25*y(i,5)/2+w26*y(i,6)/2-y(1,1));   %阀值ym=LD_d-theta;   %网络输出值yc(i)=ym;
end
yc=yc*100000;
y(:,1)=y(:,1)*10000;%计算预测的每月需求量
for j=36:-1:2ys(j)=(yc(j)-yc(j-1))/10;
endfigure(2)
plot(ys(31:36),'-*');
hold on
plot(X(31:36,1)*10000,'r:o');
legend('灰色神经网络','实际订单数')
title('灰色系统预测','fontsize',12)
xlabel('月份','fontsize',12)
ylabel('销量','fontsize',12)

http://www.yayakq.cn/news/248374/

相关文章:

  • 深圳宝安高端网站建设公司网站建设 财务归类
  • 网站到首页排名宝塔面板wordpress安装
  • 设计师接私单网站保定网站建设哪家好
  • 南京网站c建设云世家网站建设 佛山
  • 网站换友链平台帮您做网站
  • 广州免费推广网站建设国家反诈中心app下载二维码
  • 琳琅秀网站建设做网页要花多少钱
  • 上海php网站建设网站icon图标怎么加
  • 全国八大员报名官方网站安阳网站建设开发
  • 企业更新网站的好处淘宝联盟网站推广位怎么做
  • 网站建设提供资料表个人怎么建立公众号
  • 青之峰做网站在线制作图片的免费软件
  • 做网站应该了解什么软件凡科网站建站
  • 高防手表网站做网站要注意些什么
  • 网站建设费用应该开专票还是普票网站虚拟主机行吗
  • 做一个企业网站的费用网店推广是什么
  • 清远专业网站建设服务南宁企业建站程序
  • 网站建设方案概述网页设计规划书样本
  • 东平建设局网站php做网站需要后台吗
  • 个人网站带论坛 备案网站用html做的怎么弄后台
  • 网站数据库制作网站建设用户调研
  • 网站搭建要多少钱数据型网站建设
  • 什么是网站设计种类oa办公系统是什么意思
  • 网站建设方投资成本大良营销网站建设方案
  • 做棋盘游戏辅助的网站杭州网站建设浙江
  • 长春专业做网站公司排名新闻软文推广案例
  • wordpress常用函数移动端网站如何优化
  • 深圳模板网站报价单模板英文
  • 发布培训的免费网站模板怎样用jsp做网站登录
  • 一个人注册公司需要什么条件seo推广优化收费