当前位置: 首页 > news >正文

业务网站制作个人免费开发网站

业务网站制作,个人免费开发网站,做爰视频网站,wordpress验证登录页面提示:有关loss损失函数详细解读,并附源码!!! 文章目录 前言一、F.binary_cross_entropy()函数解读1.函数表达2.函数运用 二、nn.BCELoss()函数解读1.函数表达2.函数运用 三、nn.BCEWithLogitsLoss()函数解读1.函数表达…

提示:有关loss损失函数详细解读,并附源码!!!

文章目录

  • 前言
  • 一、F.binary_cross_entropy()函数解读
    • 1.函数表达
    • 2.函数运用
  • 二、nn.BCELoss()函数解读
    • 1.函数表达
    • 2.函数运用
  • 三、nn.BCEWithLogitsLoss()函数解读
    • 1.函数表达
    • 2.函数运用(logit探索)
    • 3.函数运用(pred探索)
  • 四、F.kl_div()函数解读


前言

最近我在构建蒸馏相关模型,我重温了一下交叉熵相关内容,也使用pytorch相关函数接口调用,我将对F.binary_cross_entropy()、nn.BCELoss()与nn.BCEWithLogitsLoss()函数做一个说明,同时也简单介绍相对熵的蒸馏F.kl_div()函数做一个介绍。

一、F.binary_cross_entropy()函数解读

1.函数表达

F.binary_cross_entropy(input: Tensor,  # 预测输入target: Tensor, # 标签weight: Optional[Tensor] = None, # 权重可选项size_average: Optional[bool] = None,  # 可选项,快被弃用了reduce: Optional[bool] = None,reduction: str = "mean",  # 默认均值或求和等形式
) -> Tensor:

该函数实际是交叉熵运算方式,其中input、target与权重有相同维度(batch,),其中表示可以是任何维度。同时,input为模型预测其每个元素取值范围在[0,1]间。

2.函数运用

假设输入input经过sigmoid或softmax等方式将其值转为[0,1]范围预测,target为one-hot标签(也可是教师的软标签形式),其应用代码如下:

import torch
import torch.nn.functional as F
def binary_cross_entropy():input = torch.tensor([[0.5, 1.0, 0.8], [0.2, 0.4, 0.6]])# s = nn.Sigmoid()# pred = s(input)target = torch.tensor([[0, 1.0, 0], [0, 0, 1.0]])weight = torch.tensor([[0.1, 0.9, 0.1],[0.1, 0.1, 0.9]])output_weight = F.binary_cross_entropy(input, target,weight=weight)  # input取值范围[0,1]output = F.binary_cross_entropy(input, target)  # input取值范围[0,1]print('预测数据:',input)print('标签数据:',target)print('\nbinary_cross_entropy-有权重:{}\t无权重:{}\n'.format(output_weight, output))

结果如下:

预测数据: tensor([[0.5000, 1.0000, 0.8000],[0.2000, 0.4000, 0.6000]])
标签数据: tensor([[0., 1., 0.],[0., 0., 1.]])binary_cross_entropy-有权重:0.12723307311534882	无权重:0.5912299752235413

二、nn.BCELoss()函数解读

1.函数表达

torch.nn.BCELoss(weight=None, size_average=None, reduce=None, reduction='mean')

参数说明:
weight :用于样本加权的权重张量。如果给定,则必须是一维张量,大小等于输入张量的大小。默认值为 None。
reduction :指定如何计算损失值。可选值为 ‘none’、‘mean’ 或 ‘sum’。默认值为 ‘mean’。

此为类,是对F.binary_cross_entropy()函数的调用,也是交叉熵运算方式,其中input、target与权重有相同维度(batch,),其中表示可以是任何维度。同时,input为模型预测其每个元素取值范围在[0,1]间。

2.函数运用

假设输入input经过sigmoid或softmax等方式将其值转为[0,1]范围预测,target为one-hot标签(也可是教师的软标签形式),其应用代码如下:

import torch
import torch.nn.functional as F
def bceloss():s = nn.Sigmoid()  # 输出是pred = torch.tensor([[0.5, 1.0, 0.8], [0.2, 0.4, 0.6]])# pred = s(pred)  # 一般会经过sigmoid或softmax方式将其预测转为[0,1]范围的值target = torch.tensor([[0, 1.0, 0], [0, 0, 1.0]])# nn.BCELoss输入的pred与target的形状必须相同,实际是交叉熵计算,target没有限制bce = nn.BCELoss(reduction='mean')  # size_average参数将被遗弃,使用reduction决定后续操作,有mean sumb = bce(pred, target)  # pred元素取值范围是[0,1]之间,否则会报错print('预测数据:',pred)print('标签数据:',target)print('\nbceloss:{}\n'.format(b))

结果如下:

预测数据: tensor([[0.5000, 1.0000, 0.8000],[0.2000, 0.4000, 0.6000]])
标签数据: tensor([[0., 1., 0.],[0., 0., 1.]])bceloss:0.5912299752235413

可以看出该函数与上面无权重运行结果一致,实际是对上一个函数进行了类包装,其计算方式和上面函数完全一样。

三、nn.BCEWithLogitsLoss()函数解读

1.函数表达

torch.nn.BCEWithLogitsLoss(weight=None, size_average=None, reduce=None, reduction='mean', pos_weight=None)

参数说明:
weight:用于对每个样本的损失值进行加权。默认值为 None。
reduction:指定如何对每个 batch 的损失值进行降维。可选值为 ‘none’、‘mean’ 和 ‘sum’。默认值为 ‘mean’。
pos_weight:用于对正样本的损失值进行加权。可以用于处理样本不平衡的问题。例如,如果正样本比负样本少很多,可以设置 pos_weight 为一个较大的值,以提高正样本的权重。默认值为 None。

2.函数运用(logit探索)

假设输入input经过sigmoid或softmax等方式将其值转为[0,1]范围预测,target为one-hot标签(也可是教师的软标签形式),其应用代码如下:

import torch
import torch.nn.functional as F
def bce_logit_loss():s = nn.Sigmoid()  # 输出是pred = torch.tensor([[0.5, 1.0, 0.8], [0.2, 0.4, 0.6]])target = torch.tensor([[0, 1.0, 0], [0, 0, 1.0]])bce_logit = nn.BCEWithLogitsLoss(reduction='mean')b_logit = bce_logit(pred, target)  # pred元素取值范围是[0,1]之间,否则会报错pred = s(pred)# nn.BCELoss输入的pred与target的形状必须相同,实际是交叉熵计算,target没有限制bce = nn.BCELoss(reduction='mean')  # size_average参数将被遗弃,使用reduction决定后续操作,有mean sumb = bce(pred, target)  # pred元素取值范围是[0,1]之间,否则会报错print('预测数据:', pred)print('标签数据:', target)print('\nbceloss:{}\t bce_with_logit:{} \n'.format(b, b_logit))

结果如下:

预测数据: tensor([[0.6225, 0.7311, 0.6900],[0.5498, 0.5987, 0.6457]])
标签数据: tensor([[0., 1., 0.],[0., 0., 1.]])bceloss:0.7678468823432922	 bce_with_logit:0.7678468823432922

可以看出,nn.BCELoss只需多一个nn.Sigmoid()得到的结果和nn.BCEWithLogitsLoss是一致的,说明该类只是多了一个logit过程。

3.函数运用(pred探索)

import torch
import torch.nn.functional as F
def bce_logit_loss():pred = torch.tensor([[5, 1, 8.0], [2, 4, 6.0]])target = torch.tensor([[0, 1.0, 0], [0, 0, 1.0]])bce_logit = nn.BCEWithLogitsLoss(reduction='mean')b_logit = bce_logit(pred, target)  # pred元素取值范围是[0,1]之间,否则会报错print('预测数据:', pred)print('标签数据:', target)print(' bce_with_logit:{} \n'.format( b_logit))

结果如下:

预测数据: tensor([[5., 1., 8.],[2., 4., 6.]])
标签数据: tensor([[0., 1., 0.],[0., 0., 1.]])bce_with_logit:3.2446444034576416 

可以看出nn.BCEWithLogitsLoss的输入是可以为实数,它先进行sigmoid处理,将其输入变为[0,1]范围,在进行交叉熵运算,然上面nn.BCELoss与F.binary_cross_entropy则不行。

四、F.kl_div()函数解读

该函数为蒸馏模型使用的函数,我直接给出示列,如下:

def kl_func():logits = torch.tensor([[0.5, 1.0, 0.8], [0.2, 0.4, 0.6]])probs = torch.nn.functional.softmax(logits, dim=1)  # 预测学生模型target_probs = torch.tensor([[0.3, 0.4, 0.3], [0.1, 0.5, 0.4]])  # 教师模型loss = F.kl_div(torch.log(probs), target_probs, reduction='batchmean')print('模型输出数据:', logits)print('预测数据:',probs)print('标签数据:',target_probs)print('\nkl_loss:{}\n'.format(loss))

输出结果:

模型输出数据: tensor([[0.5000, 1.0000, 0.8000],[0.2000, 0.4000, 0.6000]])
预测数据: tensor([[0.2501, 0.4123, 0.3376],[0.2693, 0.3289, 0.4018]])
标签数据: tensor([[0.3000, 0.4000, 0.3000],[0.1000, 0.5000, 0.4000]])kl_loss:0.057796258479356766

参考文章:点击这里

http://www.yayakq.cn/news/333236/

相关文章:

  • 企业商务网站有哪些策划案需要给做网站吗
  • 网站帮助潍坊网站建设求职简历
  • 网站做跳转影响排名吗南京专业网站制作
  • 公司网站开发怎么做如何推广品牌知名度
  • 怎么样在网站做产品推广wordpress运行php
  • 建自己的网站做外贸中国机械加工网网址
  • 福建省网站建设公司网站建设服务器是什么
  • 网站建设费用详细表android开发需要学什么
  • 丹阳网站建设如何广州制作外贸网站公司
  • wordpress两个网站同步网页无法访问是什么原因
  • 宁波网站建设公司费用价格做网站好的品牌
  • 比价网站 源码花都有做网站
  • 怎样申请一个网站logo模板下载网站推荐
  • 微商手机网站模板用rp怎么做网站功能按钮
  • 建立官方网站多少钱最新军事报道
  • wordpress上的博客合肥网站优化seo
  • 购买已备案网站做非法qq是哪个公司开发的
  • 做最最优秀的视频网站有哪些潍坊网站建设 58
  • 万网网站建设选哪个好网络公司 营销型网站
  • 行业协会网站建设的目的公司网站制作流程
  • 企业网站建设网站专业服务上海建设网站哪家好
  • php自助建站程序wordpress 广告关闭
  • 域名换了网站需要备案么网页制作工具哪个好
  • 网站开发教程pdf温州论坛
  • dw软件做网站电商网站建设济南建网站
  • 网站 数据库 sql 导入html静态网页作业
  • 怎么建立网站?手机网站设计公司立找亿企邦
  • 只知道网站后台怎么做301wordpress 文章章节开发
  • 网站空间怎么买网络推广方案ppt
  • 怎样免费建微网站外贸网站搜索 引擎优化方法