当前位置: 首页 > news >正文

深圳网站开发公司h5市场营销策划方案3000字

深圳网站开发公司h5,市场营销策划方案3000字,公司企业墙设计,网络广告图片PyTorch 的混合精度训练主要由两个方法实现:amp.autocast 和 amp.GradScalar。在这两个工具的帮助下,可以实现以 torch.float16 的混合精度训练。当然,这两个方法都是模块化并且通常都会一起调用,但并不一定总是需要一起使用。 参…

PyTorch 的混合精度训练主要由两个方法实现:amp.autocastamp.GradScalar。在这两个工具的帮助下,可以实现以 torch.float16 的混合精度训练。当然,这两个方法都是模块化并且通常都会一起调用,但并不一定总是需要一起使用。

参考:

Automatic Mixed Precision package - torch.amp
Automatic Mixed Precision examples
Automatic Mixed Precision recipe

amp.autocast

在 PyTorch 中,autocast 是一个用于自动混合精度训练的上下文管理器。它的主要作用是根据操作的类型自动选择使用 float16(半精度)或 float32(单精度)进行计算,从而提高训练速度并减少内存使用。以下是 autocast 的具体功能和工作原理:

  1. 自动选择精度
    操作类型:在深度学习中,不同的操作对数值精度的要求不同。例如,某些操作(如矩阵乘法)在 float16 下可以安全地执行,而其他操作(如某些归一化或损失计算)可能需要 float32 来保持数值稳定性。
    自动化:使用 autocast 时,PyTorch 会自动判断每个操作的最佳精度,并在适当的情况下使用 float16,在其他情况下使用 float32。这使得开发者不需要手动管理每个操作的精度,从而简化了代码。
  2. 上下文管理器
    使用方式autocast 通常用作上下文管理器,使用 with torch.cuda.amp.autocast(): 语句包裹需要进行混合精度计算的代码块。在这个代码块内,所有的张量操作都会根据 autocast 的规则自动选择精度。
  3. 性能提升
    加速训练:通过使用 float16 进行计算,autocast 可以显著提高训练速度,尤其是在支持半精度计算的 GPU 上(如 NVIDIA 的 Volta 和 Ampere 架构)。减少内存使用:使用 float16 还可以减少显存的占用,使得更大的模型或更大的批量大小成为可能。
  4. 示例
    一般来说,建议在模型前向传递和 loss计算中使用 autocast,而不建议在反向传播和参数更新过程中使用,例如:
# 来源:https://pytorch.org/docs/stable/amp.html#torch.autocast
# Creates model and optimizer in default precision
model = Net().cuda()
optimizer = optim.SGD(model.parameters(), ...)for input, target in data:optimizer.zero_grad()# Enables autocasting for the forward pass (model + loss)with torch.autocast(device_type="cuda"):output = model(input) # 前向传递loss = loss_fn(output, target) # loss计算# Exits the context manager before backward()loss.backward() # 后向传递(计算梯度)optimizer.step() # 参数更新
  1. 总结
    autocast 是 PyTorch 中实现混合精度训练的关键工具,它通过自动选择操作的精度来提高训练速度和减少内存使用,同时保持数值稳定性。使用 autocast 可以让开发者更专注于模型的设计和训练,而不必担心每个操作的精度管理。

amp.GradScalar

GradScaler 是 PyTorch 中用于混合精度训练的一个重要组件,主要用于处理梯度的缩放,以确保在使用半精度(float16)进行训练时的数值稳定性。以下是对 GradScaler 的详细介绍:

  1. 背景
    在混合精度训练中,使用 float16 进行计算可以提高速度和减少内存使用,但由于 float16 的数值范围和精度较低,可能会导致梯度下溢(即梯度变得过小而被视为零)或上溢(即梯度变得过大而无法表示)GradScaler 的作用就是解决这个问题。
  2. 主要功能
    动态缩放GradScaler 会在反向传播时动态调整损失值的缩放因子,以避免梯度的数值不稳定。它会根据当前的训练状态自动选择合适的缩放因子。
    防止下溢和上溢:通过将损失值乘以一个缩放因子,GradScaler 可以确保计算出的梯度不会因为数值过小而消失,也不会因为数值过大而溢出。
  3. 使用流程
    使用 GradScaler 的典型流程如下:

初始化:创建 GradScaler 的实例;

scaler = torch.cuda.amp.GradScaler()

前向传播:在前向传播时,使用 autocast 来自动选择精度,不建议使用GradScaler

   with torch.cuda.amp.autocast():output = model(inputs)loss = compute_loss(output, targets)

反向传播:

  • 使用 scaler.scale(loss).backward() 进行反向传播。这里,scale 方法会将损失值缩放,并计算梯度。
  • 使用 scaler.step(optimizer) 更新模型参数。此步骤会将缩放后的梯度应用到优化器中。
  • 使用 scaler.update() 更新缩放因子,以便在下一次迭代中使用。
  1. 示例代码

以下是一个使用 GradScaler 的简单示例:

import torch
from torch.cuda.amp import GradScaler, autocastmodel = ...  # 初始化模型
optimizer = ...  # 初始化优化器
scaler = GradScaler()  # 创建 GradScaler 实例for data, target in dataloader:optimizer.zero_grad()  # 清零梯度with autocast():  # 自动选择精度output = model(data) # 前向传递loss = compute_loss(output, target) # 计算lossscaler.scale(loss).backward()  # 缩放损失并反向传播以计算梯度scaler.step(optimizer)  # 更新模型参数scaler.update()  # 更新缩放因子
  1. 总结
    GradScaler 是 PyTorch 中实现混合精度训练的关键工具,它通过动态缩放损失值来确保在使用 float16 进行训练时的数值稳定性。使用 GradScaler 可以有效地避免梯度下溢和上溢的问题,从而提高训练的可靠性和效率。通过结合 autocastGradScaler,开发者可以在不牺牲模型性能的情况下,充分利用混合精度训练的优势。
http://www.yayakq.cn/news/522673/

相关文章:

  • 赣州网上注册公司网站竞价托管信息
  • 做网站中二级导航链接到一级导航泰州网站制作平台
  • 工程建设与设计好发表吗seo最好的网站
  • 临沂网站建设平台学习做网站建设的学校
  • 柯桥教育网站建设有哪些做特卖的网站
  • 网站建设美词原创最超值的锦州网站建设
  • 做类似昵图网网站wordpress 不用ftp
  • 网站设计制作策划中国公司名录大全
  • 海宁市规划建设局网站大连市网站建设
  • 河南省城乡和住房建设厅网站首页东莞东城
  • 网站建设人员岗位职责开发公司工程部年终总结
  • 站内营销推广方式有哪些网站建设板块如何分类
  • 鹤壁做网站优化如何做导购网站
  • 淮阳城乡建设局网站wordpress 自定义参数
  • 中山 家居 骏域网站建设专家app应用开发在哪里找
  • 山东官方网站建设活动策划方案
  • 深圳微商城网站建设茂名做网站的公司
  • 网站开发找哪个网站建设相关优化
  • 大连科技公司建设网站新闻发布会发言稿
  • 深圳营销型网站建设服务文旅部:不随意关停娱乐场所
  • 中美网站建设南通网站建设费用
  • 贵州能源网站 中企动力建设苏州广告公司招聘
  • 高新网站建设多少钱做网站还要数据库吗
  • 广州车陂网站建设中心局域网搭建工具
  • 丽水专业网站制作公司酒吧网站模板
  • 网页小游戏的网站长安网站制作公司
  • 为什么网站后台编辑不了ui培训中心
  • 临湘建设局网站郑州网站制作招聘
  • 石碣镇做网站彩页设计网站
  • 帝国网站管理系统入门教程公司做网站的费用怎么入账