当前位置: 首页 > news >正文

海南网站建设公司网站开发 保证书

海南网站建设公司,网站开发 保证书,优秀网站建设价格,网站建设综合推荐什么是半监督目标检测? 传统机器学习根据训练数据集中的标注情况,有着不同的场景,主要包括:监督学习、弱监督学习、弱半监督学习、半监督学习。由于目标检测任务的特殊性,在介绍半监督目标检测方法之前,我…

什么是半监督目标检测?

传统机器学习根据训练数据集中的标注情况,有着不同的场景,主要包括:监督学习、弱监督学习、弱半监督学习、半监督学习。由于目标检测任务的特殊性,在介绍半监督目标检测方法之前,我们查看一下目标检测在四个方向上的具体设定:
在这里插入图片描述
总而言之,目标检测的setting分为四个部分:

  • 有监督目标检测:拥有大规模带标签的数据,包括完整的实例级别的标注,即包含坐标和类别信息
  • 弱监督目标检测:数据集中的标注仅包含类别信息,不包含坐标信息
  • 弱半监督目标检测:数据集中拥有部分实例级别的标注,大量弱标注数据,模型希望利用大规模的弱标注数据提升模型的检测能力
  • 半监督目标检测:数据集中拥有部分实例级别的标注,大量未标注数据,模型希望利用大规模的无标注的数据提升模型的检测能力
      半监督目标检测方法的核心在于,如何充分利用大量未标注、多样性的数据提升模型在测试集上的性能,目前的半监督目标检测方法主要有两个方向:
    1.一致性学习(Consistency based Learning)
    2.伪标签(Pseudo-label based Learning)
    前者利用两个深度卷积神经网络学习同一张unlabeled图像不同扰动(比如水平翻转,不同的对比度,亮度等)之间的一致性,充分利用unlabeled data进行推理,经过NMS后减少大量冗余框,利用一个阈值去挑选伪标签,最后利用伪标签训练模型,两种方法没有本质区别,本身都是伪标签技术,一致性学习可以认为是一种soft pseudo label,而后者是一种hard pseudo label.
    近期比较好的半监督目标检测文章

1. Consistency-based Semi-supervised Learning for Object Detection, NeurIPS 19

论文link:https://papers.nips.cc/paper/2019/hash/d0f4dae80c3d0277922f8371d5827292-Abstract.html
code:code
  CSD 这篇文章是比较早期的半监督目标检测方法,非常简单,该文章提出了一个 Consistency-based 半监督目标检测算法,可以同时在单阶段和双阶段检测器上工作。
图2 CSD半监督目标检测算法结构图

CSD的结构如图二所示,以单节段目标检测器为例,训练的损失函数主要包括两个部分,labeled sample的监督损失和unlabeled samples的Consistency loss.针对unlabeled samples,首先将图片翻转,然后分别送到网络之中,得到对应的Feature map,由于两张翻转的图像的空间位置是可以一一对应的,因此可以在对应的位置计算一致性损失。分类部分,利用JS散度作为consistency loss;定位部分,利用L2 loss作为consistency loss。
双阶段检测器的部分与单阶段检测器类似,差别主要在于RPN(Region Proposal Network)对于不同的输入可能产生不同的proposals,因此在计算consistency loss时无法一一对应,解决此问题也很简单,两张图像使用同一个RPB生成同一组RoI(Region of Interest)来提取特征得到proposals。
作者还提出了一个 Background elimination 方法来消除大量背景部分的损失主导训练过程的问题,因此作者定义了一个 mask 来过滤大量的背景样本:
在这里插入图片描述
其中,当该实例的类别不等于背景类时等于1,否则为 0

2.A Simple Semi-Supervised Learning Framework for Object Detection

paper:link
code:code
TAC 提出了一个基于 hard pseudo label 的半监督目标检测算法,如图三所示,该方法包含四个步骤:

  • 首先利用 labeled data 训练一个 Teacher 模型;
  • 生成 pseudo label, 将 unlabeled data 输入进 Teacher 网络中,得到大量的目标框预测结果,利用 NMS 消除大量的冗余框,最后使用阈值来挑选高置信度的 pseudo label;
  • 应用 strong data augmentation。得到 pseudo label 后与 unlabeled image 图像相结合,包括图像级别的颜色抖动、geometric transformation(平移、旋转、剪切)、box-level transformation(小幅度的平移、旋转、剪切);
  • 计算无监督 loss (pseudo label)和监督学习 loss;
    在这里插入图片描述
    图三 STAC 半监督目标检测算法示意图

3.Instant-Teaching: An End-to-End Semi-Supervised Object Detection Framework

paper:link
Instant-Teaching 主要的 motivation 在于 STAC 仅生成一次的 pseudo label,即离线生成,在训练的过程中不会更新。这样的模式存在一个问题是,当训练的模型精度逐步提升,超过原本的模型,继续使用原来模型生成的 pseudo label 会限制模型精度进一步提升。因此作者提出 Instant-Teaching,以及 Instant-Teaching。
在这里插入图片描述
图四 Instant-Teaching 和 Instant-Teaching* 示意图
Instant-Teaching 采用即时生成 pseudo label 的模式,在每一个迭代中,包括两个步骤:
1.生成 pseudo label: 对 unlabeled image 进行 weak augmentation,送入模型中得到 hard label;
2.利用生成的 pseudo label 进行 strong augmentation,除了 在 STAC 中的数据增强,还包括了 Mixup 和 Mosaic,利用增强后的数据训练模型;
  Instant-Teaching 主要提出了一个 co-rectify scheme 来解决 pseudo label 的 confirmation bias 的问题(噪声 pseudo label 的错误累计效应)。因此,作者利用两个模型,给予不同的初始化参数,输入不同的数据增强的样本,分别彼此纠正和检测对方生成的 pseudo label,形式如图四右半部分。

总结

  本文介绍了一些半监督目标检测算法,即如何利用大量的 unlabeled data 提升模型的检测性能,当前主要的方法包含 consistency based 以及 pseudo label based 两类。consistency based 方法主要学习模型在 unlabeled data 上的一致性,pseudo label 则利用在 unlabeled data 上生成 pseudo label 进而监督模型训练,主要的方向即为如何生成高质量的伪标签以及模型如何对抗在 unlabeled data 上的 noise label。本文介绍了的半监督目标检测方法不多,关于方法的介绍较为笼统,如有谬误,烦请指正,其中细节,还需仔细阅读文章,欢迎讨论。

转自wx:https://mp.weixin.qq.com/s?__biz=MzU0NjgzMDIxMQ==&mid=2247602689&idx=3&sn=608057273347f3109b0a6e65212ed3c4&chksm=fb54b0edcc2339fb809d96e89c98a6a023d9f4d19185c875ce70f348d2265ddf620d91fba086&scene=27

http://www.yayakq.cn/news/413649/

相关文章:

  • wordpress网站加载效果用frontpage怎么做网页
  • 医院网站建设案例网站建设公司的出路
  • 可以做免费推广的网站吗门户网站静态页面
  • 营销型网站设计论文网站 ip pv
  • 最好的国际贸易网站那个网站点击率高
  • 建站大师英语网站海报手抄报怎么做
  • 注册公司是在哪个网站如何给一个网站做推广
  • 零基础jsp网站开发window wordpress搭建
  • 静态网站建设步骤临淄网站制作
  • 宁波企业网站优化报价响应式网站背景
  • mooc 网站建设情况陕西省高速建设集团公司网站
  • 电子商城网站开发合同设计公司网站是什么是重要的
  • 扬州网站建设要多少钱wordpress 兼容模式
  • 上海网安网站建设网页设计制作员
  • 网站如何做反爬高校网站一般采用什么网页布局
  • 有空间有域名怎么做网站怎么开网店商城
  • 广西南宁市住房和城乡建设局网站网站企业优化
  • 网站建设 系统 排名技能培训学校
  • 哪有做网站 的网络营销与直播电商就业前景
  • 做最漂亮的网站湖北微网站建设电话
  • 做网站要运用到代码吗公司怎么建立网站
  • 做写字楼的网站有哪些资料它有什么特点
  • 石家庄站列车时刻表北京给网站做系统的公司
  • 网站大小多少合适水果商城网站模板
  • 男女性男女直接做的视频网站音乐盒网站源码
  • app推广策划方案上海做网站就用乐云seo十年
  • 招聘做网站的需要技术哪些要求网站深度功能
  • 珠宝首饰网站模板做的好的淘宝客网站
  • 银川微信网站网站建设 司法公开的需要
  • 广州网站快速制作什么是网络营销的概率