当前位置: 首页 > news >正文

彭山网站建设搜全网的浏览器

彭山网站建设,搜全网的浏览器,网站建设常用代码,如何看网站有没有备案前脚刚研究了一轮GPT3.5,OpenAI很快就升级了GPT-4,整体表现有进一步提升。追赶一下潮流,研究研究GPT-4干了啥。本文内容全部源于对OpenAI公开的技术报告的解读,通篇以PR效果为主,实际内容不多。主要强调的工作&#xf…

前脚刚研究了一轮GPT3.5,OpenAI很快就升级了GPT-4,整体表现有进一步提升。追赶一下潮流,研究研究GPT-4干了啥。

本文内容全部源于对OpenAI公开的技术报告的解读,通篇以PR效果为主,实际内容不多。主要强调的工作,是“Predictable Scaling”这个概念。

上一版ChatGPT的主要挑战是,因为模型的训练量极大,很难去进行优化(ChatGPT是fine-tuning的模式)。因此,OpenAI希望能够在模型训练初期,就进行优化,从而大幅提升人工调优迭代的效率。而想要进行调优,就得知道当前模型的效果如何。因此,这个问题就被转化为了:如何在模型训练初期,就能够预测最终训练完成后的实际效果。

从结果来看,ChatGPT实现了,仅仅执行千分之一到万分之一的训练量,就可以大致预测模型的结果。

实现原理相对简单,就是在某一个模型的不同训练阶段进行实际效果测量,然后做函数拟合,发现符合幂等曲线。然后再基于采样值,测算一下幂等函数的相关参数,下一轮就可以只进行少量训练,就去预测最终效果了。

至于其他效果上的优化,OpenAI没有进一步解读原理,但整体应该还是基于“训练-奖励”的优化模型,去生成更针对性的奖励模型(比如增加法律、安全之类的奖励判断),以实现更优的效果。

原版内容如下:

3 Predictable Scaling
A large focus of the GPT-4 project was building a deep learning stack that scales predictably. The primary reason is that for very large training runs like GPT-4, it is not feasible to do extensive model-specific tuning. To address this, we developed infrastructure and optimization methods that have very predictable behavior across multiple scales. These improvements allowed us to reliably predict some aspects of the performance of GPT-4 from smaller models trained using 1, 000× – 10, 000× less compute.
3.1 Loss Prediction
The final loss of properly-trained large language models is thought to be well approximated by power laws in the amount of compute used to train the model [35, 36, 2, 14, 15].
To verify the scalability of our optimization infrastructure, we predicted GPT-4’s final loss on our internal codebase (not part of the training set) by fitting a scaling law with an irreducible loss term (as in Henighan et al. [15]): L(C) = aCb + c, from models trained using the same methodology but using at most 10,000x less compute than GPT-4. This prediction was made shortly after the run started, without use of any partial results. The fitted scaling law predicted GPT-4’s final loss with high accuracy (Figure 1).
3.2 Scaling of Capabilities on HumanEval
Having a sense of the capabilities of a model before training can improve decisions around alignment, safety, and deployment. In addition to predicting final loss, we developed methodology to predict more interpretable metrics of capability. One such metric is pass rate on the HumanEval dataset [37], which measures the ability to synthesize Python functions of varying complexity. We successfully predicted the pass rate on a subset of the HumanEval dataset by extrapolating from models trained with at most 1, 000× less compute (Figure 2).
For an individual problem in HumanEval, performance may occasionally worsen with scale. Despite these challenges, we find an approximate power law relationship −EP [log(pass_rate(C))] = α∗C−k
where k and α are positive constants, and P is a subset of problems in the dataset. We hypothesize that this relationship holds for all problems in this dataset. In practice, very low pass rates are difficult or impossible to estimate, so we restrict to problems P and models M such that given some large sample budget, every problem is solved at least once by every model.
We registered predictions for GPT-4’s performance on HumanEval before training completed, using only information available prior to training. All but the 15 hardest HumanEval problems were split into 6 difficulty buckets based on the performance of smaller models. The results on the 3rd easiest bucket are shown in Figure 2, showing that the resulting predictions were very accurate for this subset of HumanEval problems where we can accurately estimate log(pass_rate) for several smaller models. Predictions on the other five buckets performed almost as well, the main exception being GPT-4 underperforming our predictions on the easiest bucket.
Certain capabilities remain hard to predict. For example, the Inverse Scaling Prize [38] proposed several tasks for which model performance decreases as a function of scale. Similarly to a recent result by Wei et al. [39], we find that GPT-4 reverses this trend, as shown on one of the tasks called Hindsight Neglect [40] in Figure 3.
We believe that accurately predicting future capabilities is important for safety. Going forward we plan to refine these methods and register performance predictions across various capabilities before large model training begins, and we hope this becomes a common goal in the field.

http://www.yayakq.cn/news/787274/

相关文章:

  • 网站集约化建设要求wordpress调用指定文章内容
  • 域名有了怎么建网站郑州燚空间网络科技有限公司
  • 商城网站开发背景百度搜图入口
  • vs做网站案例市场监督管理局待遇如何
  • 网站建设 人性的弱点零基础室内设计难学吗
  • 网站运营维护工作 基本内容包括erlang做网站优势
  • 站长收录平台网站内容搜索
  • 唐山网站建设500元中文wordpress视频主题
  • 北京个人网站公司wordpress 多说
  • 做网站水晶头百度地图下载2022新版安装
  • 网站建设技术支持有什么煤炭建设行业协会网站
  • 公司网站管理制度现在网站建设用什么语言
  • 做化工的在哪个网站做平台好做影视网站用什么网盘最好
  • 东莞设计企业网站的有哪些wordpress图片自动居中
  • 乾安网站建设腾讯云建设网站教程
  • 网站建设费怎么做会计分录外贸平台
  • 国展网站建设深圳市房地产信息网查询系统
  • 地方网站域名网页制作模板主题
  • 嘉兴网站制作价格word做网站连接
  • 萝岗网站开发asp源码 自助建站
  • 婚庆网站建设策划案费用预算辽宁建设工程信息网怎么查人员
  • 国内优秀的网站设计网站原型图设计
  • 做网站的联系方式专门做酒店的网站
  • 附近哪里有计算机培训班兰州官网优化技术厂家
  • 手机网站跳出率低目前最牛的二级分销模式
  • 怎样做旅游视频网站用邮箱做网站
  • 广东微信网站制作哪家好wordpress 评论 样式
  • 口碑好的南京网站建设在线设计平台行业环境
  • 建设职业学校精品网站p2p网站建设公司
  • 音乐网站制作源代码云南高端网站建设