当前位置: 首页 > news >正文

台州网站建站做图片网站

台州网站建站,做图片网站,湖南网站优化公司,wordpress菜单怎么设置目录册一、项目背景 化工行业生产过程复杂,设备运行条件恶劣,对设备状态监测、生产数据采集和质量控制的要求极高。通过开源Odoo MES系统与SKF Observer Phoenix API的双向对接,可以实现设备状态的实时监测、生产数据的自动化采集以及质量数据的同步…

一、项目背景
化工行业生产过程复杂,设备运行条件恶劣,对设备状态监测、生产数据采集和质量控制的要求极高。通过开源Odoo MES系统与SKF Observer Phoenix API的双向对接,可以实现设备状态的实时监测、生产数据的自动化采集以及质量数据的同步,从而提升化工企业的生产效率和管理水平。

二、集成目标

  1. 设备状态监测:通过SKF Observer Phoenix API获取设备的振动、温度、压力等状态数据,实时同步到Odoo MES系统。

  2. 生产数据采集:利用Odoo MES系统采集生产现场的设备运行数据和生产进度数据,实现生产过程的可视化。

  3. 质量数据同步:同步生产过程中的质量检测数据,确保产品质量符合标准。

三、技术架构

  1. Odoo MES模块:

• 设备管理:用于设备状态监测和维护工单管理。

• 生产管理:用于生产数据采集和生产进度跟踪。

• 质量管理:用于质量检测数据的记录和分析。

  1. SKF Observer Phoenix API:

• 提供设备状态监测数据(如振动、温度等)。

• 支持通过API接收维护工单状态更新。

  1. 中间层:

• 使用Python脚本作为调度器,定时拉取SKF数据并触发Odoo业务逻辑。

四、集成方案

(一)设备状态监测集成

  1. 数据模型设计
   # models/maintenance_equipment.pyfrom odoo import models, fieldsclass MaintenanceEquipment(models.Model):_inherit = 'maintenance.equipment'skf_id = fields.Char('SKF设备ID')vibration_threshold = fields.Float('振动阈值(mm/s)')temperature_threshold = fields.Float('温度阈值(℃)')last_sync_time = fields.Datetime('最后同步时间')
  1. 定时任务实现
   # models/maintenance_sync.pyfrom odoo import models, apiimport requestsimport loggingclass MaintenanceSync(models.Model):_name = 'maintenance.sync'@api.modeldef cron_sync_equipment_status(self):equipments = self.env['maintenance.equipment'].search([('skf_id', '!=', False)])skf_api_key = self.env['ir.config_parameter'].sudo().get_param('skf.api_key')for equipment in equipments:url = f"https://api.skf.com/observer/v1/devices/{equipment.skf_id}/sensor_data"params = {'start_time': equipment.last_sync_time.isoformat() if equipment.last_sync_time else '2024-01-01T00:00:00Z'}headers = {'Authorization': f'Bearer {skf_api_key}'}try:response = requests.get(url, headers=headers, params=params)data = response.json()for entry in data.get('data', []):if entry['vibration'] > equipment.vibration_threshold or entry['temperature'] > equipment.temperature_threshold:self.env['maintenance.request'].create({'name': f"设备{equipment.name}状态异常",'equipment_id': equipment.id,'description': f"振动值:{entry['vibration']} mm/s,温度:{entry['temperature']} ℃"})equipment.last_sync_time = fields.Datetime.now()except Exception as e:logging.error(f"同步失败: {str(e)}")
  1. 真实案例:某化工企业通过部署设备状态监测系统,成功减少了设备突发停机事件,提高了设备的运行效率。

(二)生产数据采集集成

  1. 数据模型设计
   # models/production_data.pyfrom odoo import models, fieldsclass ProductionData(models.Model):_name = 'production.data'equipment_id = fields.Many2one('maintenance.equipment', '设备')timestamp = fields.Datetime('时间戳')production_rate = fields.Float('生产速率')quality_index = fields.Float('质量指数')
  1. 数据采集实现
   # models/production_sync.pyfrom odoo import models, apiimport requestsimport loggingclass ProductionSync(models.Model):_name = 'production.sync'@api.modeldef cron_sync_production_data(self):equipments = self.env['maintenance.equipment'].search([('skf_id', '!=', False)])skf_api_key = self.env['ir.config_parameter'].sudo().get_param('skf.api_key')for equipment in equipments:url = f"https://api.skf.com/observer/v1/production_data/{equipment.skf_id}"headers = {'Authorization': f'Bearer {skf_api_key}'}try:response = requests.get(url, headers=headers)data = response.json()for entry in data.get('production_data', []):self.env['production.data'].create({'equipment_id': equipment.id,'timestamp': entry['timestamp'],'production_rate': entry['production_rate'],'quality_index': entry['quality_index']})except Exception as e:logging.error(f"数据采集失败: {str(e)}")
  1. 真实案例:某化工企业通过部署生产数据采集系统,实现了生产过程的实时监控和数据分析,提高了生产效率。

(三)质量数据同步集成

  1. 数据模型设计
   # models/quality_check.pyfrom odoo import models, fieldsclass QualityCheck(models.Model):_name = 'quality.check'product_id = fields.Many2one('product.product', '产品')check_date = fields.Datetime('检测日期')result = fields.Selection([('pass', '合格'), ('fail', '不合格')], '检测结果')notes = fields.Text('备注')
  1. 数据同步实现
   # controllers/quality_sync.pyfrom odoo import httpimport requestsimport jsonclass QualitySyncController(http.Controller):@http.route('/quality/sync', type='json', auth='user')def sync_quality_data(self):skf_api_key = http.request.env['ir.config_parameter'].sudo().get_param('skf.api_key')url = "https://api.skf.com/observer/v1/quality_data"headers = {'Authorization': f'Bearer {skf_api_key}'}try:response = requests.get(url, headers=headers)data = response.json()for entry in data.get('quality_checks', []):product = http.request.env['product.product'].search([('default_code', '=', entry['product_code'])])if product:http.request.env['quality.check'].create({'product_id': product.id,'check_date': entry['check_date'],'result': entry['result'],'notes': entry['notes']})return {'success': True}except Exception as e:return {'error': str(e)}
  1. 真实案例:某化工企业通过部署质量数据同步系统,实现了生产过程中的质量检测数据实时同步,确保产品质量符合标准。

五、安全与配置

  1. API密钥管理:在Odoo的系统参数中存储SKF API密钥,通过加密字段保护。

  2. HTTPS加密:所有API调用均通过HTTPS传输,确保数据安全。

  3. IP白名单:限制SKF API仅允许Odoo服务器的IP访问。

六、部署与测试

  1. 部署步骤:

• 安装Odoo自定义模块。

• 配置定时任务,如每30分钟同步一次设备状态数据。

• 在SKF Observer API中注册Odoo的Webhook URL。

  1. 测试案例:

• 设备状态同步测试:模拟设备振动异常,验证是否自动生成维护工单。

• 生产数据采集测试:实时采集生产数据,验证数据的完整性和准确性。

• 质量数据同步测试:同步质量检测数据,验证是否正确记录在Odoo中。

七、总结与展望
通过Odoo MES系统与SKF Observer Phoenix API的双向集成,化工企业实现了设备状态的实时监测、生产数据的实时采集以及质量数据的同步,提升了生产效率和智能化管理水平。未来可以进一步扩展功能,如集成数字孪生技术,实现生产过程的可视化监控。


让转型不迷航——邹工转型手札

http://www.yayakq.cn/news/550371/

相关文章:

  • 网站建设落地页源码wordpress安装知更鸟主题
  • 网站建设 天津怎么样做网站管理员
  • 织梦更新网站地图网站建设第三方验收收费标准
  • 厦门网站设计培训公司asp.net网站改版 旧网站链接
  • 哪个网站能看到医生做的全部手术对二次网站开发的认识
  • 网站系统改教程生产营销网站开发联系方式
  • 广州私人做网站php 企业网站管理系统
  • 排名做网站优化佛山企业网站排名
  • 宁波网站建设联系荣胜谷歌网站模板
  • 上海虹口建设局官方网站小广告推广网站
  • 临沂房产和房建设局网站双和佛山外贸网站设计
  • 网站建设设计时代创信好outlook企业邮箱怎么注册
  • 沈阳免费网站制作寻找聊城做网站的公司
  • ui设计比较成功的网站页面建设网站的企业专业服务
  • 哈尔滨网站建设外包公司wordpress数据库字典
  • 域名申请后没有做网站天津企商网站建设公司
  • 制作网站公司选 择乐云seo专家江西建设网官方网站
  • 网站模板参考外贸网站建设需要多少钱
  • 网站开发与制作工资免费提交网址的网站
  • 网站建设 广州佛山广东电子商务网站建设价格
  • 网站seo优化主要有哪些手段广东注册公司在哪个网站申请
  • 用什么做网站最简单纬天建筑工程信息网
  • 简述织梦网站上传步骤wordpress建站注册新用户
  • Wordpress視頻加密抖音seo代理
  • 济南智能网站建设哪家便宜网络服务有点问题
  • 确定网站主题企业推广宣传方式
  • 不懂见网站怎么办app登录wordpress
  • 有网页源码怎么做网站wordpress腾讯云
  • 如何查看网站备案网站制作html代码
  • 洛阳网站设计哪家专业自己建网站要学什么