当前位置: 首页 > news >正文

餐饮系统网站建设2018年企业网站优化如何做

餐饮系统网站建设,2018年企业网站优化如何做,卖房子最快的平台,网站后期维护方案分类任务评价指标 分类任务中,有以下几个常用指标: 混淆矩阵准确率(Accuracy)精确率(查准率,Precision)召回率(查全率,Recall)F-scorePR曲线ROC曲线 1. 混…

分类任务评价指标

分类任务中,有以下几个常用指标:

  • 混淆矩阵
  • 准确率(Accuracy)
  • 精确率(查准率,Precision)
  • 召回率(查全率,Recall)
  • F-score
  • PR曲线
  • ROC曲线

1. 混淆矩阵

真实1真实0
预测1TPFP
预测0FNTN

预测的角度看:

  • TP: True Positive。预测为1,实际为1,预测正确。
  • FP: False Positive。预测为1,实际为0,预测错误。
  • FN: False Negative。预测为0,实际为1,预测错误。
  • TN: True Negative。预测为0,实际为0,预测正确。

2.准确率(Accuracy)

所有预测结果中,正确预测的占比:

$Accuracy = \frac{TP+TN}{TP+FP+FN+TN} $

准确率衡量整体(包括正样本和负样本)的预测准确度,但不适用与样本不均衡的情况。比如有100个样本,其中正样本90个,负样本10个,此时模型将所有样本都预测为正样本就可以取得 90% 的准确率,但实际上这个模型根本就没有分类的能力。

3. 精确率(查准率,Precision)

所有预测为1的样本中,正确预测的占比:

$ Precision = \frac{TP}{TP+FP}$

衡量正样本的预测准确度

4. 召回率(查全率,Recall)

所有真实标签为1的样本中,正确预测的占比:

R e c a l l = T P T P + F N Recall = \frac{TP}{TP+FN} Recall=TP+FNTP

衡量模型预测正样本的能力

5. F-score

综合考虑精确率和召回率:

$ F_{score}=(1+\beta2)\frac{PR}{\beta2*P+R} $

  • β=1,表示Precision与Recall一样重要(此时也叫F1-score
  • β<1,表示Precision比Recall重要
  • β>1,表示Recall比Precision重要

精确率和召回率相互“制约”:精确率高,则召回率就低;召回率高,则精确率就低。因此就需要综合考虑它们,最常见的方法就是 F-score 。F-score越大模型性能越好。

6. PR曲线

6.1 绘制方法

PR曲线以召回率R为横坐标、以精确率P为纵坐标,以下面的数据为例说明一下绘制方法:

12345
预测为正类的概率 score0.90.80.70.50.3
实际类别 class10110
  1. 将每个样本的预测结果按照预测为正类的概率排序(上面已排序)

  2. 依次看每个样本

    a) 对于样本1,将它的 score 0.9 作为阈值,即 score >= 0.9时样本预测为 1 ,反之预测为 0,得到以下混淆矩阵

    真实1真实0
    预测110
    预测022

    b) 对于样本2,将它的 score 0.8 作为阈值,即 score >= 0.8时样本预测为 1 ,反之预测为 0,得到以下混淆矩阵

    真实1真实0
    预测111
    预测021

    c) ……

    d) ……

    e) 对于样本5,将它的 score 0.3 作为阈值,即 score >= 0.3时样本预测为 1 ,反之预测为 0,得到以下混淆矩阵

    真实1真实0
    预测132
    预测000
  3. 根据上面的混淆矩阵,依次算出 5 对(R, R),以召回率R为横坐标、以精确率P为纵坐标,将这些点连接起来即得到 PR 曲线。

6.2 模型性能衡量方法

请添加图片描述

  1. 如果曲线A完全“包住”曲线B,则A的性能优于B(P和R越高,代表算法分类能力越强);

  2. 曲线AB发生交叉时:以PR曲线下的面积作为衡量指标(这个指标通常难以计算);

  3. 使用 “平衡点”(P=R时的取值),值越大代表效果越优(这个点过于简化,更常用的是F1-score)。

7. ROC曲线

真阳性率(真实1里面正确预测为1的概率): T P R = T P T P + F N TPR = \frac{TP}{TP+FN} TPR=TP+FNTP

假阳性率(真实0里面错误预测为1的概率): F P R = F P F P + T N FPR = \frac{FP}{FP+TN} FPR=FP+TNFP

7.1 绘制方法

ROC曲线以假阳性率FPR为横坐标、以真阳性率TPR为纵坐标,以下面的数据为例说明一下绘制方法:

12345
预测为正类的概率 score0.90.80.70.50.3
实际类别 class10110
  1. 将每个样本的预测结果按照预测为正类的概率排序(上面已排序)

  2. 依次看每个样本

    a) 对于样本1,将它的 score 0.9 作为阈值,即 score >= 0.9时样本预测为 1 ,反之预测为 0,得到以下混淆矩阵

    真实1真实0
    预测110
    预测022

    b) 对于样本2,将它的 score 0.8 作为阈值,即 score >= 0.8时样本预测为 1 ,反之预测为 0,得到以下混淆矩阵

    真实1真实0
    预测111
    预测021

    c) ……

    d) ……

    e) 对于样本5,将它的 score 0.3 作为阈值,即 score >= 0.3时样本预测为 1 ,反之预测为 0,得到以下混淆矩阵

    真实1真实0
    预测132
    预测000
  3. 根据上面的混淆矩阵,依次算出 5 对(FPR, TPR),以假阳性率FPR为横坐标、以真阳性率TPR为纵坐标,将这些点连接起来即得到 ROC 曲线。

7.2 模型性能衡量方法

请添加图片描述

ROC曲线下的面积(AUC)作为衡量指标,面积越大,性能越好。

7.3 AUC的计算

在有M个正样本,N个负样本的数据集里。一共有MN对样本(一对样本即一个正样本与一个负样本)。统计这MN对样本里,正样本的预测概率大于负样本的预测概率的个数:

A U C = ∑ I ( P 正样本 , P 负样本 ) M ∗ N AUC = \frac{\sum I(P_\text{正样本},P_\text{负样本})}{M^*N} AUC=MNI(P正样本,P负样本)

其中:

I ( P 正样本 , P 负样本 ) = { 1 , P 正样本 > P 正样本 0.5 , P 正样本 = P 负样本 0 , P 正样本 < P 负样本 I(P_\text{正样本},P_\text{负样本})=\begin{cases}1,P_\text{正样本}>P_\text{正样本}\\0.5,P_\text{正样本}=P_\text{负样本}\\0,P_\text{正样本}<P_\text{负样本}\end{cases} I(P正样本,P负样本)= 1,P正样本>P正样本0.5,P正样本=P负样本0,P正样本<P负样本

http://www.yayakq.cn/news/12020/

相关文章:

  • 效果型网站做二手车放在哪个网站好
  • 点播视频网站怎么建设大淘客网站怎样做百度推广
  • 深圳华强做网站长沙百度推广开户
  • 游戏登录器列表更新网站建设网站规划说明书
  • 校园网站建设的基本条件如何申请开通网站
  • 建设医院的网站网站设计流程是什么
  • 新开传奇网站新开网如何做ptp刷流量的网站
  • 公司和公司网站的关系服务器做php网站吗
  • 用wordpress做的外贸网站做外贸企业网站要注意哪些
  • 网站管理系统哪个好西安做网站xamokj
  • 娄底网站开发网站怎么查哪家公司做的
  • 专业网站推荐宝安中心站是几号线
  • 台州网站定制wordpress漫画站
  • 网站建设要素网站设计的公司皆选奇点网络
  • 网站开发与维护学生作品集小程序商城模板下载
  • 新手学做免费网站软件iis 网站设置
  • 高端品牌网站建设兴田德润实惠网站程序设置主页面
  • 个人网站架设wordpress模块管理
  • 制作网站公司合同注意事项网站模板去哪要
  • 营销型网站建站系统google关键词推广
  • 千图网免费设计图片素材网青岛优化网站多少钱
  • 网站未备案可以上线吗不花钱的网站建设
  • 网站建设规范方法建设银行官网首页网站招聘
  • 企业seo网站优化设计wordpress怎么设置友情链接
  • 通栏 网站模板免费视频app软件哪个好
  • 网站怎么做视频的软件东莞黄页企业名录
  • 用asp做网站题目网站上传文件代码
  • 做餐饮的网站广东省网站免备案
  • 网站优化如何提高排名怎样在微信公众号里做微网站
  • 网站弹窗无法显示网络营销是以什么为基础