当前位置: 首页 > news >正文

网站开发配置表格网站调优

网站开发配置表格,网站调优,海淀区企业网站建设,太原网站制作一、分类原因 由于植物分类所使用的数据集存在一定问题,修改起来比较麻烦,本次采用kaggle的ButterflyMothsImageClassification数据集,对100这种蝴蝶进行分类。 二、100中蝴蝶类别 ‘ADONIS’,‘AFRICAN GIANT SWALLOWTAIL’,‘AMERICAN S…

一、分类原因

由于植物分类所使用的数据集存在一定问题,修改起来比较麻烦,本次采用kaggle的ButterflyMothsImageClassification数据集,对100这种蝴蝶进行分类。

二、100中蝴蝶类别

‘ADONIS’,‘AFRICAN GIANT SWALLOWTAIL’,‘AMERICAN SNOOT’,‘AN 88’,‘APPOLLO’,‘ARCIGERA FLOWER MOTH’,‘ATALA’,‘ATLAS MOTH’,‘BANDED ORANGE HELICONIAN’,‘BANDED PEACOCK’,‘BANDED TIGER MOTH’,‘BECKERS WHITE’,‘BIRD CHERRY ERMINE MOTH’,‘BLACK HAIRSTREAK’,‘BLUE MORPHO’,‘BLUE SPOTTED CROW’,‘BROOKES BIRDWING’,‘BROWN ARGUS’,‘BROWN SIPROETA’,‘CABBAGE WHITE’,‘CAIRNS BIRDWING’,‘CHALK HILL BLUE’,‘CHECQUERED SKIPPER’,‘CHESTNUT’,‘CINNABAR MOTH’,‘CLEARWING MOTH’,‘CLEOPATRA’,‘CLODIUS PARNASSIAN’,‘CLOUDED SULPHUR’,‘COMET MOTH’,‘COMMON BANDED AWL’,‘COMMON WOOD-NYMPH’,‘COPPER TAIL’,‘CRECENT’,‘CRIMSON PATCH’,‘DANAID EGGFLY’,‘EASTERN COMA’,‘EASTERN DAPPLE WHITE’,‘EASTERN PINE ELFIN’,‘ELBOWED PIERROT’,‘EMPEROR GUM MOTH’,‘GARDEN TIGER MOTH’,‘GIANT LEOPARD MOTH’,‘GLITTERING SAPPHIRE’,‘GOLD BANDED’,‘GREAT EGGFLY’,‘GREAT JAY’,‘GREEN CELLED CATTLEHEART’,‘GREEN HAIRSTREAK’,‘GREY HAIRSTREAK’,‘HERCULES MOTH’,‘HUMMING BIRD HAWK MOTH’,‘INDRA SWALLOW’,‘IO MOTH’,‘Iphiclus sister’,‘JULIA’,‘LARGE MARBLE’,‘LUNA MOTH’,‘MADAGASCAN SUNSET MOTH’,‘MALACHITE’,‘MANGROVE SKIPPER’,‘MESTRA’,‘METALMARK’,‘MILBERTS TORTOISESHELL’,‘MONARCH’,‘MOURNING CLOAK’,‘OLEANDER HAWK MOTH’,‘ORANGE OAKLEAF’,‘ORANGE TIP’,‘ORCHARD SWALLOW’,‘PAINTED LADY’,‘PAPER KITE’,‘PEACOCK’,‘PINE WHITE’,‘PIPEVINE SWALLOW’,‘POLYPHEMUS MOTH’,‘POPINJAY’,‘PURPLE HAIRSTREAK’,‘PURPLISH COPPER’,‘QUESTION MARK’,‘RED ADMIRAL’,‘RED CRACKER’,‘RED POSTMAN’,‘RED SPOTTED PURPLE’,‘ROSY MAPLE MOTH’,‘SCARCE SWALLOW’,‘SILVER SPOT SKIPPER’,‘SIXSPOT BURNET MOTH’,‘SLEEPY ORANGE’,‘SOOTYWING’,‘SOUTHERN DOGFACE’,‘STRAITED QUEEN’,‘TROPICAL LEAFWING’,‘TWO BARRED FLASHER’,‘ULYSES’,‘VICEROY’,‘WHITE LINED SPHINX MOTH’,‘WOOD SATYR’,‘YELLOW SWALLOW TAIL’,‘ZEBRA LONG WING’

三、配置文件

auto_scale_lr = dict(base_batch_size=256)
data_preprocessor = dict(mean=[123.675,116.28,103.53,],num_classes=100,std=[58.395,57.12,57.375,],to_rgb=True)
dataset_type = 'ImageNet'
data_root = 'data/ButterflyMothsImageClassification'
default_hooks = dict(checkpoint=dict(interval=1, type='CheckpointHook', max_keep_ckpts=2, save_best="auto"),logger=dict(interval=100, type='LoggerHook'),param_scheduler=dict(type='ParamSchedulerHook'),sampler_seed=dict(type='DistSamplerSeedHook'),timer=dict(type='IterTimerHook'),visualization=dict(enable=False, type='VisualizationHook'))
default_scope = 'mmpretrain'
env_cfg = dict(cudnn_benchmark=False,dist_cfg=dict(backend='nccl'),mp_cfg=dict(mp_start_method='fork', opencv_num_threads=0))
launcher = 'none'
load_from = './work_dirs/resnet50_8xb32-coslr_in1k/resnet50_8xb32_in1k_20210831-ea4938fc.pth'
log_level = 'INFO'
model = dict(backbone=dict(depth=50,num_stages=4,out_indices=(3,),style='pytorch',type='ResNet'),head=dict(in_channels=2048,# loss=dict(loss_weight=1.0, type='CrossEntropyLoss'),loss=dict(type='LabelSmoothLoss',label_smooth_val=0.1,num_classes=100,reduction='mean',loss_weight=1.0),num_classes=100,topk=(1,5,),type='LinearClsHead'),data_preprocessor=data_preprocessor,neck=dict(type='GlobalAveragePooling'),type='ImageClassifier')
train_cfg = dict(by_epoch=True, max_epochs=300, val_interval=1)
optim_wrapper = dict(optimizer=dict(lr=0.1, momentum=0.9, type='SGD', weight_decay=0.0001))
param_scheduler = dict(T_max=260, begin=20, by_epoch=True, end=300, type='CosineAnnealingLR')
randomness = dict(deterministic=False, seed=None)
resume = False
test_cfg = dict()
test_pipeline = [dict(type='LoadImageFromFile'),dict(edge='short', scale=256, type='ResizeEdge'),dict(crop_size=224, type='CenterCrop'),dict(type='PackInputs'),
]
test_dataloader = dict(batch_size=32,collate_fn=dict(type='default_collate'),dataset=dict(data_root=data_root,pipeline=test_pipeline,split='test',ann_file='test.txt',type=dataset_type),num_workers=1,persistent_workers=True,pin_memory=True,sampler=dict(shuffle=False, type='DefaultSampler'))
test_evaluator = dict(topk=(1,5,), type='Accuracy')train_pipeline = [dict(type='LoadImageFromFile'),dict(scale=224, type='RandomResizedCrop'),dict(direction='horizontal', prob=0.5, type='RandomFlip'),dict(type='PackInputs'),
]
train_dataloader = dict(batch_size=45,collate_fn=dict(type='default_collate'),dataset=dict(data_root=data_root,pipeline=train_pipeline,split='train',ann_file='train.txt',type=dataset_type),num_workers=1,persistent_workers=True,pin_memory=True,sampler=dict(shuffle=True, type='DefaultSampler'))val_cfg = dict()
val_dataloader = dict(batch_size=45,collate_fn=dict(type='default_collate'),dataset=dict(data_root=data_root,pipeline=test_pipeline,split='val',ann_file='valid.txt',type=dataset_type),num_workers=1,persistent_workers=True,pin_memory=True,sampler=dict(shuffle=False, type='DefaultSampler'))
val_evaluator = test_evaluator
vis_backends = [dict(type='LocalVisBackend'),
]
visualizer = dict(type='UniversalVisualizer', vis_backends=[dict(type='LocalVisBackend'),])
work_dir = './work_dirs\\resnet50_8xb32-coslr_in1k'

三、训练结果

accuracy/top1: 97.0000 accuracy/top5: 99.0000

四、结果展示

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

http://www.yayakq.cn/news/995254/

相关文章:

  • 个人做的好的淘宝客网站加盟网站需要怎么做
  • 企业网站建设珠海做网站是什么工作
  • 网站导航条设计提供建立网站服务的公司
  • 网站制作计算机全flash网站设计
  • 网站开发的职责与分工网站本地环境搭建教程
  • 哪个浏览器能打开那种网站中山seo网络推广
  • 如何给网站做seo优化google 网站优化工具
  • 广州建设网站公司重庆网页制作设计
  • 中国网站建设公司有哪些电脑上怎么运行wordpress
  • 企业网站主页设计图片深圳建设工程交易服务
  • 网站内页标题修改wordpress h5自适应
  • 聊城专业建wap网站中国建筑土木建设有限公司网站
  • 网站进度条wordpress互通
  • 你的网站赚钱吗后端开发百度百科
  • seo网站制作微博内网站怎么做的
  • 如何做强一个网站的品牌做赚钱的网站有哪些
  • 常州微信网站建设公司企业网站设计建设服务
  • 做网课网站企业网站建设的重要性及意义
  • 哪里有免费的ppt模板下载网站百度知识营销
  • 木兰网站建设张家界商城网站开发设计
  • 科技类网站怎么做学ui+wordpress模板
  • 学生处网站建设招标公告沈阳制作网站
  • 小程序价格为什么比网站建设高搜索引擎优化核心
  • 做网站都可以做什么365优化大师软件下载
  • ios 常用网站肇庆网站建设方案咨询
  • 企业网站建设要求电脑网站制作教程
  • 网站禁止访问怎么解除网站流量分析指标
  • 南昌个人网站制作怎么做微信插件大全下载
  • 厦门微信商城网站建设美容行业网站建设
  • 建设网站要做的工作虚拟机 网站建设