当前位置: 首页 > news >正文

免费网站的资源可以发公众号吗WordPress文章底部广告插件

免费网站的资源可以发公众号吗,WordPress文章底部广告插件,宿州商务网站建设,adc网站建设Python Numpy 实现神经网络自动训练:反向传播与激活函数的应用详解 这篇文章介绍了如何使用 Python 的 Numpy 库来实现神经网络的自动训练,重点展示了反向传播算法和激活函数的应用。反向传播是神经网络训练的核心,能够通过计算梯度来优化模…

Python Numpy 实现神经网络自动训练:反向传播与激活函数的应用详解

这篇文章介绍了如何使用 Python 的 Numpy 库来实现神经网络的自动训练,重点展示了反向传播算法和激活函数的应用。反向传播是神经网络训练的核心,能够通过计算梯度来优化模型参数,使得预测更加精准。文中详细演示了如何使用 Numpy 进行神经网络的前向预测、反向传播更新、误差计算,并通过引入 ReLU 等激活函数提升模型的非线性拟合能力。最后,通过对比训练前后的结果,展示了加入激活函数后模型性能的显著提升,适合初学者和爱好者学习神经网络的基础原理与应用。

文章目录

  • Python Numpy 实现神经网络自动训练:反向传播与激活函数的应用详解
      • 一 简单介绍反向传播
      • 二 用 Numpy 来做神经网络
        • 没有训练
        • 开始训练
      • 三 加入激活函数
        • 常用激活函数
        • 非线性计算,不加激活函数
        • 非线性计算,加入激活函数
      • 四 完整代码示例
      • 五 源码地址

一 简单介绍反向传播

反向传播(Backpropagation)是训练神经网络的核心算法,用于通过计算损失函数相对于网络各个参数的梯度,逐步优化这些参数,从而使模型的预测结果更加准确。使用梯度反向更新规则做神经网络参数优化调整。
这段代码计算每一层神经层的更新幅度,让神经网络对数据拟合变好,不理解先当工具方法记住。

def backprop(dz, layer, layer_in, learning_rate=0.01):"""进行反向传播,更新当前层的权重和偏置,并计算传递给前一层的梯度。参数:dz: 当前层输出的梯度(损失函数对激活输出的偏导数)layer: 当前层的参数字典,包含权重 "w" 和偏置 "b"layer_in: 输入到当前层的激活值learning_rate: 学习率,用于控制参数更新的步长,默认值为 0.01返回:new_dz: 传递给前一层的梯度"""# 计算损失函数对权重的梯度,layer_in.T 是当前层输入的转置,dot(dz) 进行矩阵乘法gw = layer_in.T.dot(dz)# 计算损失函数对偏置的梯度,按列求和,保留维度,求得每个偏置的梯度gb = np.sum(dz, axis=0, keepdims=True)# 计算传递给前一层的梯度,使用当前层的权重转置与 dz 相乘new_dz = dz.dot(layer["w"].T)# 更新当前层的权重:使用学习率乘以权重梯度,然后加到原有的权重上(梯度上升)layer["w"] += learning_rate * gw# 更新当前层的偏置:同样使用学习率乘以偏置梯度,然后加到原有的偏置上layer["b"] += learning_rate * gb# 返回传递给前一层的梯度,以便继续进行反向传播return new_dz

二 用 Numpy 来做神经网络

没有训练
def predict(x, l1, l2):o1 = x.dot(l1["w"]) + l1["b"]o2 = o1.dot(l2["w"]) + l2["b"]return [o1, o2]def predict01():# 数据x = np.linspace(-1, 1, 10)[:, None]  # shape [10, 1]y = np.random.normal(loc=0, scale=0.2, size=[10, 1]) + x  # shape [10, 1]# 搭建模型l1 = layer(1, 3)l2 = layer(3, 1)draw_line(x, predict(x, l1, l2)[-1])draw_scatter(x, y)

运行结果

在这里插入图片描述

可以看出在没有训练的时候,模型预测的结果与实际 y 值在数量级上存在较大差异。

开始训练
def predict02():# 数据x = np.linspace(-1, 1, 10)[:, None]  # shape [10, 1]y = np.random.normal(loc=0, scale=0.2, size=[10, 1]) + x  # shape [10, 1]l1 = layer(1, 3)l2 = layer(3, 1)# 训练 50 次learning_rate = 0.01for i in range(50):# 前向预测o1, o2 = predict(x, l1, l2)# 误差计算if i % 10 == 0:average_cost = np.mean(np.square(o2 - y))print(average_cost)# 反向传播,梯度更新dz2 = -2 * (o2 - y)  # 输出误差 (o2 - y)**2 的导数dz1 = backprop(dz2, l2, o1)_ = backprop(dz1, l1, x)# 画一个训练后的图,对比上文中有数值问题的线draw_line(x, predict(x, l1, l2)[-1])draw_scatter(x, y)

运行结果

在这里插入图片描述

三 加入激活函数

常用激活函数
# 激活函数
def relu(x):return np.maximum(0, x)def relu_derivative(x):  # 导数return np.where(x > 0, np.ones_like(x), np.zeros_like(x))def tanh(x):return np.tanh(x)def tanh_derivative(x):  # 导数return 1 - np.square(np.tanh(x))def sigmoid(x):return 1 / (1 + np.exp(-x))def sigmoid_derivative(x):  # 导数o = sigmoid(x)return o * (1 - o)
非线性计算,不加激活函数
def predict03():# 非线性计算x = np.linspace(-1, 1, 30)[:, None]  # shape [30, 1]y = np.random.normal(loc=0, scale=0.2, size=[30, 1]) + x ** 2  # shape [30, 1]# draw_scatter(x, y)# 搭建模型l1 = layer(1, 10)l2 = layer(10, 1)# 训练 300 次learning_rate = 0.01for i in range(300):# 前向预测o1, o2 = predict(x, l1, l2)# 误差计算if i % 10 == 0:average_cost = np.mean(np.square(o2 - y))print(average_cost)# 反向传播,梯度更新dz2 = -2 * (o2 - y)  # 输出误差 (o2 - y)**2 的导数dz1 = backprop(dz2, l2, o1)_ = backprop(dz1, l1, x)draw_line(x, predict(x, l1, l2)[-1])draw_scatter(x, y)

运行结果

在这里插入图片描述

模型训练结果在量级上出现较大差距,欠拟合。

非线性计算,加入激活函数
def predict04():# 非线性计算x = np.linspace(-1, 1, 30)[:, None]  # shape [30, 1]y = np.random.normal(loc=0, scale=0.2, size=[30, 1]) + x ** 2  # shape [30, 1]# 搭建模型l1 = layer(1, 10)l2 = layer(10, 1)# 训练 300 次learning_rate = 0.01for i in range(300):# 前向预测o1, a1, o2 = predictjihuo(x, l1, l2)# 误差计算if i % 10 == 0:average_cost = np.mean(np.square(o2 - y))print(average_cost)# 反向传播,梯度更新dz2 = -2 * (o2 - y)  # 输出误差 (o2 - y)**2 的导数dz1 = backprop(dz2, l2, a1)dz1 *= relu_derivative(o1)  # 这里要添加对应激活函数的反向传播_ = backprop(dz1, l1, x)draw_line(x, predictjihuo(x, l1, l2)[-1])draw_scatter(x, y)

运行结果

在这里插入图片描述

模型成功拟合了这些异常数据点,说明非线性激活函数确实非常有效。

四 完整代码示例

# This is a sample Python script.
from matplotlib import pyplot as plt
import numpy as np# Press ⌃R to execute it or replace it with your code.
# Press Double ⇧ to search everywhere for classes, files, tool windows, actions, and settings.
def draw_scatter(x, y):# 使用 matplotlib 的 scatter 方法来绘制散点图# x.ravel() 和 y.ravel() 将 x 和 y 的二维数组转换为一维数组,适合作为散点图的输入plt.scatter(x.ravel(), y.ravel())# 显示图表plt.show()def draw_line(x, y):idx = np.argsort(x.ravel())plt.plot(x.ravel()[idx], y.ravel()[idx])# plt.show()def layer(in_dim, out_dim):weights = np.random.normal(loc=0, scale=0.1, size=[in_dim, out_dim])bias = np.full([1, out_dim], 0.1)return {"w": weights, "b": bias}# 激活函数
def relu(x):return np.maximum(0, x)def relu_derivative(x):  # 导数return np.where(x > 0, np.ones_like(x), np.zeros_like(x))def tanh(x):return np.tanh(x)def tanh_derivative(x):  # 导数return 1 - np.square(np.tanh(x))def sigmoid(x):return 1 / (1 + np.exp(-x))def sigmoid_derivative(x):  # 导数o = sigmoid(x)return o * (1 - o)def backprop(dz, layer, layer_in, learning_rate=0.01):"""进行反向传播,更新当前层的权重和偏置,并计算传递给前一层的梯度。参数:dz: 当前层输出的梯度(损失函数对激活输出的偏导数)layer: 当前层的参数字典,包含权重 "w" 和偏置 "b"layer_in: 输入到当前层的激活值learning_rate: 学习率,用于控制参数更新的步长,默认值为 0.01返回:new_dz: 传递给前一层的梯度"""# 计算损失函数对权重的梯度,layer_in.T 是当前层输入的转置,dot(dz) 进行矩阵乘法gw = layer_in.T.dot(dz)# 计算损失函数对偏置的梯度,按列求和,保留维度,求得每个偏置的梯度gb = np.sum(dz, axis=0, keepdims=True)# 计算传递给前一层的梯度,使用当前层的权重转置与 dz 相乘new_dz = dz.dot(layer["w"].T)# 更新当前层的权重:使用学习率乘以权重梯度,然后加到原有的权重上(梯度上升)layer["w"] += learning_rate * gw# 更新当前层的偏置:同样使用学习率乘以偏置梯度,然后加到原有的偏置上layer["b"] += learning_rate * gb# 返回传递给前一层的梯度,以便继续进行反向传播return new_dzdef predictjihuo(x, l1, l2):o1 = x.dot(l1["w"]) + l1["b"]a1 = relu(o1)  # 这里我添加了一个激活函数o2 = a1.dot(l2["w"]) + l2["b"]return [o1, a1, o2]def predict(x, l1, l2):"""预测函数,执行前向传播,计算两层神经网络的输出。参数:x: 输入数据,形状为 [N, 输入特征数],此处为 [10, 1]。l1: 第一层的参数字典,包含权重 "w" 和偏置 "b"。l2: 第二层的参数字典,包含权重 "w" 和偏置 "b"。返回:o1: 第一层的输出结果。o2: 第二层的输出结果(最终输出)。"""# 第一层的输出,x.dot(l1["w"]) 是线性组合,+ l1["b"] 加上偏置o1 = x.dot(l1["w"]) + l1["b"]# 第二层的输出,o1.dot(l2["w"]) 是线性组合,+ l2["b"] 加上偏置o2 = o1.dot(l2["w"]) + l2["b"]# 返回两层的输出,o1 为第一层的输出,o2 为最终的输出return [o1, o2]def predict01():"""模拟预测和数据绘制函数,包含数据生成、模型搭建、前向预测和绘图。"""# 生成输入数据 x,使用 np.linspace 生成从 -1 到 1 的 10 个均匀分布的点,并reshape为 [10, 1]x = np.linspace(-1, 1, 10)[:, None]  # 形状 [10, 1]# 生成目标值 y,基于 x 加上高斯噪声,模拟真实数据,形状为 [10, 1]y = np.random.normal(loc=0, scale=0.2, size=[10, 1]) + x  # 形状 [10, 1]# 搭建神经网络模型# 第一层:输入维度为 1,输出维度为 3(即3个神经元)l1 = layer(1, 3)# 第二层:输入维度为 3,输出维度为 1l2 = layer(3, 1)# 使用 predict 函数进行前向传播,绘制预测结果# 只提取第二层的输出 o2 来绘制预测的线draw_line(x, predict(x, l1, l2)[-1])# 绘制真实数据点的散点图draw_scatter(x, y)def predict02():# 数据x = np.linspace(-1, 1, 10)[:, None]  # shape [10, 1]y = np.random.normal(loc=0, scale=0.2, size=[10, 1]) + x  # shape [10, 1]l1 = layer(1, 3)l2 = layer(3, 1)# 训练 50 次learning_rate = 0.01for i in range(50):# 前向预测o1, o2 = predict(x, l1, l2)# 误差计算if i % 10 == 0:average_cost = np.mean(np.square(o2 - y))print(average_cost)# 反向传播,梯度更新dz2 = -2 * (o2 - y)  # 输出误差 (o2 - y)**2 的导数dz1 = backprop(dz2, l2, o1)_ = backprop(dz1, l1, x)# 画一个训练后的图,对比上文中有数值问题的线draw_line(x, predict(x, l1, l2)[-1])draw_scatter(x, y)def predict03():# 非线性计算x = np.linspace(-1, 1, 30)[:, None]  # shape [30, 1]y = np.random.normal(loc=0, scale=0.2, size=[30, 1]) + x ** 2  # shape [30, 1]# draw_scatter(x, y)# 搭建模型l1 = layer(1, 10)l2 = layer(10, 1)# 训练 300 次learning_rate = 0.01for i in range(300):# 前向预测o1, o2 = predict(x, l1, l2)# 误差计算if i % 10 == 0:average_cost = np.mean(np.square(o2 - y))print(average_cost)# 反向传播,梯度更新dz2 = -2 * (o2 - y)  # 输出误差 (o2 - y)**2 的导数dz1 = backprop(dz2, l2, o1)_ = backprop(dz1, l1, x)draw_line(x, predict(x, l1, l2)[-1])draw_scatter(x, y)def predict04():# 非线性计算x = np.linspace(-1, 1, 30)[:, None]  # shape [30, 1]y = np.random.normal(loc=0, scale=0.2, size=[30, 1]) + x ** 2  # shape [30, 1]# 搭建模型l1 = layer(1, 10)l2 = layer(10, 1)# 训练 300 次learning_rate = 0.01for i in range(300):# 前向预测o1, a1, o2 = predictjihuo(x, l1, l2)# 误差计算if i % 10 == 0:average_cost = np.mean(np.square(o2 - y))print(average_cost)# 反向传播,梯度更新dz2 = -2 * (o2 - y)  # 输出误差 (o2 - y)**2 的导数dz1 = backprop(dz2, l2, a1)dz1 *= relu_derivative(o1)  # 这里要添加对应激活函数的反向传播_ = backprop(dz1, l1, x)draw_line(x, predictjihuo(x, l1, l2)[-1])draw_scatter(x, y)def print_hi(name):# Use a breakpoint in the code line below to debug your script.print(f'Hi, {name}')  # Press ⌘F8 to toggle the breakpoint.# 模型前向预测# 数据x = np.linspace(-1, 1, 10)[:, None]  # shape [10, 1]y = np.random.normal(loc=0, scale=0.2, size=[10, 1]) + x  # shape [10, 1]# draw_scatter(x, y)# 模型l1 = layer(1, 3)l2 = layer(3, 1)# 计算o = x.dot(l1["w"]) + l1["b"]print("第一层出来后的 shape:", o.shape)o = o.dot(l2["w"]) + l2["b"]print("第二层出来后的 shape:", o.shape)print("output:", o)# draw_scatter(x, o)# 简单介绍反向传播# predict01()# predict02()# 加入激活函数# 非线性计算,没有激活函数的网络训练,量级上的差距大# predict03()# 非线性计算,加入激活函数predict04()# Press the green button in the gutter to run the script.
if __name__ == '__main__':print_hi('神经网络-自动训练')# See PyCharm help at https://www.jetbrains.com/help/pycharm/

复制粘贴并覆盖到你的 main.py 中运行,运行结果如下。

Hi, 神经网络-自动训练
第一层出来后的 shape: (10, 3)
第二层出来后的 shape: (10, 1)
output: [[0.08015376][0.08221984][0.08428592][0.086352  ][0.08841808][0.09048416][0.09255024][0.09461632][0.0966824 ][0.09874848]]
0.2226335913018929
0.18084056623965614
0.17646520657891238
0.16955062165383475
0.15974897747454914
0.14609449775016456
0.12879398035319886
0.11000871768876343
0.09272999949822598
0.07986100731357502
0.07149628207512877
0.06657668787644673
0.06412748050655417
0.06308965708664192
0.06255298788129363
0.06233764319523034
0.06229224784095634
0.062220235356859256
0.06227320308423159
0.06227607241875045
0.06218961938206315
0.062183519685144004
0.06220136162617964
0.062260925337883535
0.06228186644083771
0.062212564435570314
0.06214763225225857
0.062190709318072676
0.06225667345334308
0.06227302776778138

五 源码地址

代码地址:

国内看 Gitee 之 numpy/神经网络-自动训练.py

国外看 GitHub 之 numpy/神经网络-自动训练.py

引用 莫烦 Python

http://www.yayakq.cn/news/503932/

相关文章:

  • 定陶区城乡和住房建设局网站网站ip拦截
  • 做网站seo的公司哪家好网站建设:成都今网科技
  • 网站建设需求计划站长素材ppt模板免费下载
  • 网站建设 资质荣誉wordpress付款
  • 吉林省城乡建设厅网站6网站域名名字
  • 定制app网站wordpress 调整字体
  • 网站模板 手机网站建设方案书可自行撰写
  • 公司网站建设与维护方案ppt可以做图接单的网站
  • wordpress福利网站源码做图网站
  • 手机电脑网站 建站程序wordpress安装权限
  • 腾讯官方网站建设天津seo诊断技术
  • 网站类别划分优秀网站建设空间
  • 企业网站维护上海工程公司
  • 平台网站建设可行报告wordpress主题导致空白
  • 直播网站怎么做深圳网站seo优化排名公司
  • 做药品网站有哪些河南省汝州文明建设门户网站
  • 杭州市钱江新城投资集团有限公司征集网站建设合作单位的公告如何添加网站图标
  • 设计电子商务网站建设方案鹤壁建设网站推广公司电话
  • 深圳做外贸网站公司小程序是什么东西
  • 免费建站的网站免费网站注册平台
  • 域名做违法网站重庆网站推广服务
  • 建网站松滋哪家强?wordpress代码修改
  • 做明星同款的网站WordPress众筹网站主题
  • 房地产网站做编辑刚刚入行营销型网站建设项目需求表
  • 建立门户网站的意义为何要网站优化
  • c 网站开发需要的技术WordPress审核评论插件
  • 企业策划是做什么的谷歌seo网站推广
  • 公司网站建设劳伦app加盟代理
  • 万网制作网站怎么样中国品牌网站设计
  • 网站制作公司排名前十如何利用微信进行企业网站推广