当前位置: 首页 > news >正文

全国建设厅网站海外广告投放平台

全国建设厅网站,海外广告投放平台,母婴网站dede织梦,手机网站怎么做沉浸式消息传递范式 消息函数、聚合函数与更新函数 消息函数接受一个参数 edges,这是一个 EdgeBatch 的实例, 在消息传递时,它被DGL在内部生成以表示一批边。edges 有 src、 dst 和 data 共3个成员属性, 分别用于访问源节点、目标节点…

消息传递范式

消息函数、聚合函数与更新函数

消息函数接受一个参数 edges,这是一个 EdgeBatch 的实例, 在消息传递时,它被DGL在内部生成以表示一批边。edgessrcdstdata 共3个成员属性, 分别用于访问源节点、目标节点和边的特征。

聚合函数 接受一个参数 nodes,这是一个 NodeBatch 的实例, 在消息传递时,它被DGL在内部生成以表示一批节点。nodes 的成员属性 mailbox 可以用来访问节点收到的消息。 一些最常见的聚合操作包括 sum、max、min 等。

更新函数 接受一个如上所述的参数 nodes。此函数对 聚合函数 的聚合结果进行操作, 通常在消息传递的最后一步将其与节点的特征相结合,并将输出作为节点的新特征。

DGL在命名空间 dgl.function 中实现了常用的消息函数和聚合函数作为 内置函数
一般来说,DGL建议 尽可能 使用内置函数,因为它们经过了大量优化,并且可以自动处理维度广播。

内置消息函数可以是一元函数或二元函数。

  • 对于一元函数,DGL支持 copy 函数。
  • 对于二元函数, DGL现在支持 add、 sub、 mul、 div、 dot 函数。

消息的内置函数的命名约定是 u 表示 源 节点v 表示 目标 节点e 表示
这些函数的参数是字符串,指示相应节点和边的输入和输出特征字段名。

关于内置函数的列表,请参见: DGL-Built-in Function
下面表中标识了其中给出的各种消息传递函数以及常见的聚合函数:
在这里插入图片描述

例如,要对源节点的 hu 特征和目标节点的 hv 特征求和, 然后将结果保存在边的 he 特征上,用户可以使用内置函数 dgl.function.u_add_v('hu', 'hv', 'he')。而以下用户定义消息函数与此内置函数等价:

def message_func(edges):return {'he': edges.src['hu'] + edges.dst['hv']}

DGL支持内置的聚合函数 summaxminmean 操作。 聚合函数通常有两个参数,它们的类型都是字符串。一个用于指定 mailbox 中的字段名,一个用于指示目标节点特征的字段名。例如, dgl.function.sum(‘m’, ‘h’) 等价于如下所示的对接收到消息求和的用户定义函数:

import torch as th
import dgl
import dgl.function as fn
def reduce_func(nodes):return {'h': torch.sum(nodes.mailbox['m'], dim=1)}

单独调用逐边计算

在DGL中,也可以在不涉及消息传递的情况下,通过 apply_edges() 单独调用逐边计算。 apply_edges() 的参数是一个消息函数。并且在默认情况下,这个接口将更新所有的边。例如:

 import dgl.function as fngraph.apply_edges(fn.u_add_v('el', 'er', 'e'))

消息传递高级API

对于消息传递, update_all() 是一个高级API。它在单个API调用里合并了消息生成、 消息聚合和节点特征更新,这为从整体上进行系统优化提供了空间。
update_all() 的参数是一个消息函数、一个聚合函数和一个更新函数。
更新函数是一个可选择的参数,用户也可以不使用它,而是在 update_all 执行完后直接对节点特征进行操作。 由于更新函数通常可以用纯张量操作实现,所以DGL不推荐在 update_all 中指定更新函数。例如:

def update_all_example(graph):# 在graph.ndata['ft']中存储结果graph.update_all(fn.u_mul_e('ft', 'a', 'm'),# 消息函数fn.sum('m', 'ft'))# 聚合函数# 在update_all外调用更新函数final_ft = graph.ndata['ft'] * 2return final_ft

update_all函数对应的数学公式为:
在这里插入图片描述

此调用通过将源节点特征 ft 与边特征 a 相乘生成消息 m, 然后对所有消息求和来更新节点特征 ft,再将 ft 乘以2得到最终结果 final_ft。

简单应用

# 边 0->1, 0->2, 0->3, 1->3
u, v = th.tensor([0,1,2,3,3,4,4]), th.tensor([2,0,1,2,5,1,3])
g = dgl.graph((u, v))
# bg = dgl.to_bidirected(g)#无向图g.ndata['x'] = th.ones(g.num_nodes(),3,dtype=th.float32)               # 长度为3的节点特征
g.ndata['ft'] = th.ones(g.num_nodes(),3,dtype=th.float32)               # 长度为3的节点特征g.edata['a'] = th.ones(g.num_edges(),3,dtype=th.float32)  # 标量整型特征
print(g.ndata)
temp = update_all_example(g)
print('temp:',temp)

执行结果:
在这里插入图片描述
执行结果分析:
在这里插入图片描述

本小节全部代码

"""消息传递范式消息函数 接受一个参数 edges,这是一个 EdgeBatch 的实例, 在消息传递时,它被DGL在内部生成以表示一批边。
edges 有 src、 dst 和 data 共3个成员属性, 分别用于访问源节点、目标节点和边的特征。聚合函数 接受一个参数 nodes,这是一个 NodeBatch 的实例, 在消息传递时,它被DGL在内部生成以表示一批节点。
nodes 的成员属性 mailbox 可以用来访问节点收到的消息。 一些最常见的聚合操作包括 sum、max、min 等。更新函数 接受一个如上所述的参数 nodes。此函数对 聚合函数 的聚合结果进行操作, 通常在消息传递的最后一步将
其与节点的特征相结合,并将输出作为节点的新特征。DGL在命名空间 dgl.function 中实现了常用的消息函数和聚合函数作为 内置函数。
一般来说,DGL建议 尽可能 使用内置函数,因为它们经过了大量优化,并且可以自动处理维度广播。
""""""
内置消息函数可以是一元函数或二元函数。对于一元函数,DGL支持 copy 函数。
对于二元函数, DGL现在支持 add、 sub、 mul、 div、 dot 函数。
消息的内置函数的命名约定是 u 表示 源 节点, v 表示 目标 节点,e 表示 边。
这些函数的参数是字符串,指示相应节点和边的输入和输出特征字段名。关于内置函数的列表,请参见: DGL-Built-in Function: https://docs.dgl.ai/api/python/dgl.function.html#api-built-in例如,要对源节点的 hu 特征和目标节点的 hv 特征求和, 然后将结果保存在边的 he 特征上,用户可以使用内置函数 dgl.function.u_add_v('hu', 'hv', 'he')。
而以下用户定义消息函数与此内置函数等价。
def message_func(edges):return {'he': edges.src['hu'] + edges.dst['hv']}
""""""
例如,要对源节点的 hu 特征和目标节点的 hv 特征求和, 然后将结果保存在边的 he 特征上,
用户可以使用内置函数 dgl.function.u_add_v('hu', 'hv', 'he')。 而以下用户定义消
息函数与此内置函数等价。
"""
def message_func(edges):return {'he': edges.src['hu'] + edges.dst['hv']}"""
DGL支持内置的聚合函数 sum、 max、 min 和 mean 操作。 聚合函数通常有两个参数,它们的类型都是字符串。
一个用于指定 mailbox 中的字段名,一个用于指示目标节点特征的字段名,
例如, dgl.function.sum('m', 'h') 等价于如下所示的对接收到消息求和的用户定义函数:
"""
import torch as th
import dgl
import dgl.function as fn
def reduce_func(nodes):return {'h': torch.sum(nodes.mailbox['m'], dim=1)}"""单独调用逐边计算
在DGL中,也可以在不涉及消息传递的情况下,通过 apply_edges() 单独调用逐边计算。 
apply_edges() 的参数是一个消息函数。并且在默认情况下,这个接口将更新所有的边。例如:
"""
# import dgl.function as fn
# graph.apply_edges(fn.u_add_v('el', 'er', 'e'))"""消息传递高级API
对于消息传递, update_all() 是一个高级API。它在单个API调用里合并了消息生成、 消息聚合和节点特征更新,
这为从整体上进行系统优化提供了空间。update_all() 的参数是一个消息函数、一个聚合函数和一个更新函数。 
更新函数是一个可选择的参数,用户也可以不使用它,而是在 update_all 执行完后直接对节点特征进行操作。 
由于更新函数通常可以用纯张量操作实现,所以DGL不推荐在 update_all 中指定更新函数。例如:
"""
def update_all_example(graph):# 在graph.ndata['ft']中存储结果graph.update_all(fn.u_mul_e('ft', 'a', 'm'),# 消息函数fn.sum('m', 'ft'))# 聚合函数# 在update_all外调用更新函数final_ft = graph.ndata['ft'] * 2return final_ft"""
此调用通过将源节点特征 ft 与边特征 a 相乘生成消息 m, 然后对所有消息求和来更新节点特征 ft,再将 ft 乘以2得到最终结果 final_ft。
"""
# 边 0->1, 0->2, 0->3, 1->3
u, v = th.tensor([0,1,2,3,3,4,4]), th.tensor([2,0,1,2,5,1,3])
g = dgl.graph((u, v))
# bg = dgl.to_bidirected(g)#无向图g.ndata['x'] = th.ones(g.num_nodes(),3,dtype=th.float32)               # 长度为3的节点特征
g.ndata['ft'] = th.ones(g.num_nodes(),3,dtype=th.float32)               # 长度为3的节点特征g.edata['a'] = th.ones(g.num_edges(),3,dtype=th.float32)  # 标量整型特征
print(g.ndata)
temp = update_all_example(g)
print('temp:',temp)
http://www.yayakq.cn/news/763697/

相关文章:

  • 河南宝盈建设工程有限公司网站曲阳网站建设在哪
  • 游戏网站建设与策划方案建设网站的各种问题
  • ps做网站ui邯郸自媒体有哪些
  • 做网站需要先搞目录么网页设计报价单模板
  • 好学校平台网站模板下载介绍美食的网站模板免费下载
  • 河南网站建设哪个公司做得好石家庄网站开发价格
  • 网站开发案例详解光盘下载如何用网页制作网站
  • 网站备案 邮寄资料WordPress搜索按钮代码
  • 建立网站考虑的三大要素网站推广方案注意事项
  • 栾城区住房建设局官方网站贵阳的网站建设公司
  • 云南网站建设设计制作图片教程
  • 在线设计logo免费网站南京成旭通网站建设公司怎么样
  • 呼和浩特企业网站排名优化杭州公共资源交易网
  • 高端的佛山网站建设价格用什么做网站
  • 做网站是哪个专业龙华网站建设首页地址
  • wordpress的x站模板wordpress 批量修改分类
  • 网站域名在哪里看便民信息发布平台
  • 邢台网站建设免费建站软件排行榜
  • 营口房产建设信息网站建筑工程网络副业
  • 网站手机端排名怎么做wordpress设置客户端缓存时间
  • 网上免费个人网站长沙建长沙建网站公司
  • 免费推广网站教程二级医院做网站
  • 忘记网站备案账号制作图片视频的软件有哪些
  • 最简单网站设计的代码什么是门户网站
  • 惠州做网站的公司有哪些网站建设使用的什么
  • 建设银行的网站特点手机app官网下载
  • 企业网站的优化建议创建微信小程序要钱吗
  • 网站后台管理界面代码郑州网站建设价格
  • 铜官山区建设局网站网站建设的原则 流程
  • 网站建设收费合同下载网站