当前位置: 首页 > news >正文

建设用地规划许可证在哪个网站查询有哪些好的模板网站

建设用地规划许可证在哪个网站查询,有哪些好的模板网站,免费国外建站,免费注册网址域名容斥恒等式的证明 推广公式 P(A∪B)P(A)P(B)−P(A∩B)P(A\cup B)P(A)P(B)-P(A\cap B) P(A∪B)P(A)P(B)−P(A∩B) (a)设A、B、C为三个事件,则下列恒等式成立: P(A∪B∪C)P(A)P(B)P(C)−P(A∩B)−P(A∩C)−P(B∩C)P(A∩B∩C)P(A\cup B\cup C)P(A)P(B)P(C)…

容斥恒等式的证明

推广公式
P(A∪B)=P(A)+P(B)−P(A∩B)P(A\cup B)=P(A)+P(B)-P(A\cap B) P(AB)=P(A)+P(B)P(AB)
(a)设A、B、C为三个事件,则下列恒等式成立:
P(A∪B∪C)=P(A)+P(B)+P(C)−P(A∩B)−P(A∩C)−P(B∩C)+P(A∩B∩C)P(A\cup B\cup C)=P(A)+P(B)+P(C)-P(A\cap B)-P(A\cap C)-P(B\cap C)+P(A\cap B\cap C) P(ABC)=P(A)+P(B)+P(C)P(AB)P(AC)P(BC)+P(ABC)
(b)设A1A_1A1,A2A_2A2,A3A_3A3,…,AnA_nAn为n个事件,令S1S_1S1={i∣1≤i≤ni|1\leq i \leq ni∣1in},S2S_2S2={(i1,i2)∣1≤i1<i2≤n(i_1,i_2)|1\leq i_1 < i_2 \leq n(i1,i2)∣1i1<i2n},一般的,令S1S_1S1为满足条件$ \le i_1 < i_2<… < i_m\le n的m维指标,(的m维指标,(m维指标,(i_1,…i_m$)的集合,则下列恒等式成立:
P(∪k=1nAk)=∑i∈S1P(Ai)−∑(i1,i2)∈S2P(Ai1∩Ai2)+∑i1,i2,i3∈S3P(Ai1∩Ai2∩Ai3)−...+(−1)n−1P(∩k=1nAk)P(\cup^n_{k=1}A_k)=\displaystyle \sum_{i\in S_1}P(A_i)-\displaystyle\sum_{(i_1,i_2)\in S_2}P(A_{i_1} \cap A_{i_2})+\displaystyle \sum_{i_1,i_2,i_3 \in S_3}P(A_{i_1} \cap A_{i_2} \cap A_{i_3})-...+(-1)^{n-1}P(\cap^n_{k=1}A_{k})P(k=1nAk)=iS1P(Ai)(i1,i2)S2P(Ai1Ai2)+i1,i2,i3S3P(Ai1Ai2Ai3)...+(1)n1P(k=1nAk)

解:(a)利用公式P(X∪Y)=P(X)+P(Y)−P(X∩Y)P(X\cup Y)=P(X)+P(Y)-P(X\cap Y)P(XY)=P(X)+P(Y)P(XY)(A∪B)∩C=(A∩C)∪(B∩C)(A\cup B)\cap C=(A\cap C)\cup (B\cap C)(AB)C=(AC)(BC),我们有
P(A∪B∪C)=P(A∪B)+P(C)−P((A∪B)∩C)=P(A∪B)+P(C)−P((A∩C)∪(B∩C))=P(A∪B)+P(C)−P(A∩C)−P(B∩C)+P(A∩B∩C)=P(A)+P(B)−P(A∩B)+P(C)−P(A∩C)−P(B∩C)+P(A∩B∩C)=P(A)+P(B)+P(C)−P(A∩B)−P(A∩C)−P(B∩C)+P(A∩B∩C)P(A\cup B\cup C)=P(A\cup B)+P(C)-P((A\cup B )\cap C) \\~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ =P(A\cup B)+P(C)-P((A\cap C )\cup (B\cap C))\\~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ =P(A\cup B)+P(C)-P(A\cap C)-P(B\cap C)+P(A\cap B\cap C) \\~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ =P(A)+P(B)-P(A\cap B)+P(C)-P(A\cap C)-P(B\cap C)+P(A\cap B\cap C) \\~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ =P(A)+P(B)+P(C)-P(A\cap B)-P(A\cap C)-P(B\cap C)+P(A\cap B\cap C)P(ABC)=P(AB)+P(C)P((AB)C)                                 =P(AB)+P(C)P((AC)(BC))                                 =P(AB)+P(C)P(AC)P(BC)+P(ABC)                                 =P(A)+P(B)P(AB)+P(C)P(AC)P(BC)+P(ABC)                                 =P(A)+P(B)+P(C)P(AB)P(AC)P(BC)+P(ABC)
(b)利用归纳法,主要推断部分可以模仿(a)中步骤

n=2时,P(A∪B)=P(A)+P(B)−P(A∩B)P(A\cup B)=P(A)+P(B)-P(A\cap B)P(AB)=P(A)+P(B)P(AB).

假设n=k-1,有
P(∪k=1k−1Ak)=∑i∈S1P(Ai)−∑(i1,i2)∈S2P(Ai1∩Ai2)+∑i1,i2,i3∈S3P(Ai1∩Ai2∩Ai3)−...+(−1)n−2P(∩k=1k−1Aik)P(\cup^{k-1}_{k=1}A_k)=\displaystyle \sum_{i\in S_1}P(A_i)-\displaystyle\sum_{(i_1,i_2)\in S_2}P(A_{i_1} \cap A_{i_2})+\displaystyle \sum_{i_1,i_2,i_3 \in S_3}P(A_{i_1} \cap A_{i_2} \cap A_{i_3})-...+(-1)^{n-2}P(\cap^{k-1}_{k=1}A_{i_k})P(k=1k1Ak)=iS1P(Ai)(i1,i2)S2P(Ai1Ai2)+i1,i2,i3S3P(Ai1Ai2Ai3)...+(1)n2P(k=1k1Aik)

则n=k时,P(∪k=1nAk)=P(∪k=1k−1Ak∪Ak)P(\cup^n_{k=1}A_k)=P(\cup^{k-1}_{k=1}A_k\cup A_k)P(k=1nAk)=P(k=1k1AkAk)

∪i=1k−1Ai=B\cup^{k-1}_{i=1}A_i=Bi=1k1Ai=B,

P(∪k=1nAk)=P(B∪Ak)P(\cup^n_{k=1}A_k)=P(B\cup A_k)P(k=1nAk)=P(BAk)
所以,

P(∪k=1nAk)=P(B∪Ak)=P(B)+P(Ak)−P(B∩Ak)P(\cup^n_{k=1}A_k)=P(B\cup A_k)=P(B)+P(A_k)-P(B\cap A_k)P(k=1nAk)=P(BAk)=P(B)+P(Ak)P(BAk) (1)

前两个地方都很好推导,主要是最后一项。

P(B∩Ak)=P(∪i=1k−1AiAk)=∑i=1k−1P(AiAk)+(−11)∑1≤i1<i2≤ik−1P(Ai1Ai2Ak)+...+(−1)k−2P(A1A2...Ak)P(B\cap A_k)=P(\cup^{k-1}_{i=1}A_iA_k)\\=\displaystyle \sum_{i=1}^{k-1}P(A_iA_k)+(-1^1) \displaystyle \sum_{1\le i_1<i_2\le i_{k-1}}P(A_{i_1}A_{i_2}A_k)+...+(-1)^{k-2}P(A_1A_2...A_k)P(BAk)=P(i=1k1AiAk)=i=1k1P(AiAk)+(11)1i1<i2ik1P(Ai1Ai2Ak)+...+(1)k2P(A1A2...Ak) (2)

把(2)带入(1),

得到:

P(∪k=1nAk)=∑i∈S1P(Ai)−∑(i1,i2)∈S2P(Ai1∩Ai2)+∑i1,i2,i3∈S3P(Ai1∩Ai2∩Ai3)−...+(−1)n−1P(∩k=1nAk)P(\cup^n_{k=1}A_k)=\displaystyle \sum_{i\in S_1}P(A_i)-\displaystyle\sum_{(i_1,i_2)\in S_2}P(A_{i_1} \cap A_{i_2})+\displaystyle \sum_{i_1,i_2,i_3 \in S_3}P(A_{i_1} \cap A_{i_2} \cap A_{i_3})-...+(-1)^{n-1}P(\cap^n_{k=1}A_{k})P(k=1nAk)=iS1P(Ai)(i1,i2)S2P(Ai1Ai2)+i1,i2,i3S3P(Ai1Ai2Ai3)...+(1)n1P(k=1nAk)

得证。

http://www.yayakq.cn/news/741097/

相关文章:

  • 热门专业单页网站seo优化
  • 钢材销售网站建设用KEGG网站做KEGG富集分析
  • 手机建立网站山东专业网站建设
  • 广州自助网站搭建制作公司网站建设的经费预算
  • 大连开发区网站开发公司php做手机网站
  • visual studio做的网站中级平面设计师证书有用吗
  • 石头科技 网站开发做文学网站用什么域名
  • 给企业做网站的公司西安番禺做网站服务
  • 表白网页制作网站福州网站建设加推广
  • 网站建设七点网站哪些页面会做静态化
  • 广州网站建设企业东莞公司注册官网
  • 怎么用ps做网站首页背景图片西安市住宅和城乡建设局网站
  • 自己做企业网站服务器wordpress 喜欢
  • 曰本做爰视频网站wordpress 搭建平台
  • 淄博乐达网站建设吧经典logo设计案例分析
  • 重庆网站排名优化wordpress屏蔽自带密码重置
  • so域名网站白银市住房与建设局网站
  • 网站建设北京市新型建筑模板设备
  • 嘉兴网站制作计划自己做网站外包
  • 宝安网站设计项目浙江省建设信息港网
  • 怎么看待网站开发拼多多seo是什么意思
  • 昆明市城乡建设局网站网站版心怎么做
  • 静安区网站建设wordpress仿国际
  • 买模板做的网站表单数据在哪里看可视化网站制作软件
  • 顾问式 网站能不能不用虚拟主机建设网站
  • 网站分站开发计划书北京百度推广投诉电话
  • 安康市有没有滴滴平台网络营销的优化和推广方式
  • 园区做网站长春百度关键词搜索
  • 重庆市建设工程信息网官网福海玻璃seo个人优化方案案例
  • 成都建设网站企业电话wordpress persona