当前位置: 首页 > news >正文

金口河移动网站建设根据链接获取网站名称

金口河移动网站建设,根据链接获取网站名称,福建有没有网站做一件代发,新人做网站不懂设计版面怎么办一、引言 在算法领域中,网格路径问题是一个经典的动态规划应用场景。这类问题通常涉及在一个二维网格中从起点到终点的路径规划,机器人每次只能向右或向下移动一步。本文将深入探讨两种典型的网格路径问题:基础无障碍版本和带障碍物版本&…

一、引言

在算法领域中,网格路径问题是一个经典的动态规划应用场景。这类问题通常涉及在一个二维网格中从起点到终点的路径规划,机器人每次只能向右或向下移动一步。本文将深入探讨两种典型的网格路径问题:基础无障碍版本和带障碍物版本,并详细分析它们的动态规划解法。

二、问题一:基础无障碍网格路径

2.1 问题描述:

一个机器人位于 M 行 N 列网格的左上角 (0,0),每次只能向右或向下移动一步。目标是到达网格右下角 (M-1,N-1),求所有可能的路径数量。

输入格式:一行,两个整数,分别表示网格的行数M和列数N(0<M,N≤100)
输出格式:一行,一个整数,表示从左上角走到右下角的不同的路径条数
输入样例:2 3
输出样例:3

2.2 动态规划解法:

我们使用二维数组 dp[i][j] 表示从起点 (0,0) 到达位置 (i,j) 的路径数量。

2.3 状态转移方程

dp[i][j] = dp[i-1][j] + dp[i][j-1]

2.4 边界条件

  • 第一行所有位置:只能从左边向右移动到达

  • 第一列所有位置:只能从上边向下移动到达

2.5 C++ 代码实现:

#include <iostream>
using namespace std;const int MAX_SIZE = 101;
int dp[MAX_SIZE][MAX_SIZE];int main() {int M, N;cin >> M >> N;// 初始化边界条件for (int i = 0; i < M; i++) dp[i][0] = 1;for (int j = 0; j < N; j++) dp[0][j] = 1;// 动态规划填表for (int i = 1; i < M; i++) {for (int j = 1; j < N; j++) {dp[i][j] = dp[i-1][j] + dp[i][j-1];}}cout << dp[M-1][N-1];return 0;
}

2.6 算法分析

  • 时间复杂度:O(M×N),需要填充整个网格

  • 空间复杂度:O(M×N),使用二维数组存储中间状态

  • 关键点:边界条件的处理是解决问题的基石

三、问题二:带障碍物的网格路径

3.1 问题描述

在基础问题基础上增加障碍物,机器人不能通过障碍物位置。给定障碍物坐标,计算从左上角到右下角的路径数量(无法到达时输出0)。

输入格式:
第一行:两个整数 M 和 N,表示网格的行数和列数

第二行:一个整数 K,表示障碍物的数量

接下来 K 行:每行两个整数 X 和 Y,表示障碍物的坐标(行和列均从0开始计数)

输出格式:
一个整数,表示路径数量(若无法到达,输出0)

输入样例:
5 6
5
1 1
1 3
3 2
3 4
4 3
输出样例:
5

3.2 动态规划解法改进

使用二维数组 dp[i][j] 表示到达 (i,j) 的路径数量,obstacle[i][j] 标记障碍物位置。

3.3 状态转移方程

如果 (i,j) 无障碍物:dp[i][j] = dp[i-1][j] + dp[i][j-1]
否则:dp[i][j] = 0

3.4 边界条件调整

  • 起点有障碍物:直接返回0

  • 第一行/列:一旦遇到障碍物,后续位置均不可达

3.5 C++ 代码实现

#include <iostream>
#include <vector>
using namespace std;const int MAX_SIZE = 101;
int dp[MAX_SIZE][MAX_SIZE];
bool obstacle[MAX_SIZE][MAX_SIZE] = {false};int main() {int M, N, K;cin >> M >> N >> K;// 标记障碍物for (int i = 0; i < K; i++) {int x, y;cin >> x >> y;obstacle[x][y] = true;}// 起点处理if (obstacle[0][0]) {cout << 0;return 0;}// 初始化边界dp[0][0] = 1;for (int i = 1; i < M; i++) dp[i][0] = obstacle[i][0] ? 0 : dp[i-1][0];for (int j = 1; j < N; j++) dp[0][j] = obstacle[0][j] ? 0 : dp[0][j-1];// 动态规划填表for (int i = 1; i < M; i++) {for (int j = 1; j < N; j++) {if (obstacle[i][j]) {dp[i][j] = 0;} else {dp[i][j] = dp[i-1][j] + dp[i][j-1];}}}cout << dp[M-1][N-1];return 0;
}

3.6 算法分析

  • 时间复杂度:O(M×N),与基础版本相同

  • 空间复杂度:O(M×N),需要存储障碍物信息和状态数组

  • 关键改进

    1. 起点障碍物特殊处理

    2. 边界条件需要检查障碍物

    3. 动态规划时跳过障碍物位置

四、动态规划优化技巧

4.1 空间优化

可以使用滚动数组将空间复杂度优化为 O(N):

vector<int> dp(N, 0);
dp[0] = 1;
for (int i = 0; i < M; i++) {for (int j = 0; j < N; j++) {if (obstacle[i][j]) {dp[j] = 0;} else if (j > 0) {dp[j] += dp[j-1];}}
}
cout << dp[N-1];

4.2 常见变种问题

  1. 最小路径和:求路径上数字和的最小值

  2. 存在负权值:使用不同的动态规划策略

  3. 四方向移动:增加向上和向左移动能力

  4. 概率问题:计算成功到达的概率

http://www.yayakq.cn/news/386335/

相关文章:

  • 山东网站建设app网络营销平台的类型
  • 怎样使用网站后台的模板西安网络营销公司排名
  • 在线建站模板网站开发需求分析怎么写
  • 主流网站宽度深圳网站设计 建设元
  • 网站平台多少钱WordPress修改首页文章预览
  • 建设网站 莆田施工企业对下结算容易出现的问题
  • 建电影网站的程序织梦网站更换域名
  • 网站建设管理 自查 报告佛山网站制作专家
  • 做网站 请示手机做wifi中继上外国网站
  • 网站设计确认函用什么网站做动感相册
  • 举报不良网站信息怎么做京东商城网站地址是多少
  • 网站备案如何查询网站ip地址范围
  • 网站标题栏怎么做网页制作模块素材
  • 为什么做街舞网站网站建设误区
  • 营销型网站分类广东网站开发费用
  • 网站建设 软件有哪些内容搭建平台有哪些平台说法
  • 工商工事上哪个网站做清涧县住房和成乡建设局 网站
  • 企业网络推广网站建设网页设计入门教程pdf
  • 简述网站开发的过程凡客诚品创始人
  • 建设公司网站法律声明网站seo插件
  • 网站对话窗口怎么做杨和网站设计制作
  • 贵阳seo网站推广优化做自由行的网站
  • 网站开发分支结构惠州网站建设 惠州邦
  • 网站闭关保护怎么做免费推广方式都有哪些
  • wordpress刷新ssl就没了网站建设seo规范
  • 中铁建设集团华东分公司网站模仿别人网站算侵权吗
  • 郑州专业做网站的手机评测网站
  • wordpress 后台界面sem和seo的工作
  • 怎么查询网站后台地址电子商务网站开发课程
  • 网上有做衣服的网站国外域名注册网站